Off-shell Partition Functions in 3d Gravity

被引:5
作者
Eberhardt, Lorenz [1 ]
机构
[1] Inst Adv Study, Sch Nat Sci, Einstein Dr 1, Princeton, NJ 08540 USA
关键词
MODULI SPACE; INTERSECTION THEORY; FIELD-THEORIES; GAUGE-THEORIES; CURVES; EQUATIONS; QUANTIZATION; INVARIANTS; PARTICLES; HOMOLOGY;
D O I
10.1007/s00220-024-04963-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We explore three-dimensional gravity with negative cosmological constant via canonical quantization. We focus on chiral gravity which is related to a single copy of PSL(2,R)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {PSL}(2,\mathbb {R})$$\end{document} Chern-Simons theory and is simpler to treat in canonical quantization. Its phase space for an initial value surface sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} is given by the appropriate moduli space of Riemann surfaces. We use geometric quantization to compute partition functions of chiral gravity on three-manifolds of the form sigma xS1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma \times {{\,\textrm{S}\,}}<^>1$$\end{document}, where sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document} can have asymptotic boundaries. Most of these topologies do not admit a classical solution and are thus not amenable to a direct semiclassical path integral computation. We use an index theorem that expresses the partition function as an integral of characteristic classes over phase space. In the presence of n asymptotic boundaries, we use techniques from equivariant cohomology to localize the integral to a finite-dimensional integral over M over bar g,n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\overline{\mathcal {M}}_{g,n}$$\end{document}, which we evaluate in low genus cases. Higher genus partition functions quickly become complicated since they depend in an oscillatory way on Newton's constant. There is a precise sense in which one can isolate the non-oscillatory part which we call the fake partition function. We establish that there is a topological recursion that computes the fake partition functions for arbitrary Riemann surfaces sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma $$\end{document}. There is a scaling limit in which the model reduces to JT gravity and our methods give a novel way to compute JT partition functions via equivariant localization.
引用
收藏
页数:78
相关论文
共 110 条
  • [1] Fast conformal bootstrap and constraints on 3d gravity
    Afkhami-Jeddi, Nima
    Hartman, Thomas
    Tajdini, Amirhossein
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (05)
  • [2] A TQFT from Quantum Teichmuller Theory
    Andersen, Jorgen Ellegaard
    Kashaev, Rinat
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (03) : 887 - 934
  • [3] THE PICARD-GROUPS OF THE MODULI SPACES OF CURVES
    ARBARELLO, E
    CORNALBA, M
    [J]. TOPOLOGY, 1987, 26 (02) : 153 - 171
  • [4] Arbarello E., arXiv
  • [5] Arbarello E, 1998, PUBL MATH-PARIS, P97
  • [6] THE YANG-MILLS EQUATIONS OVER RIEMANN SURFACES
    ATIYAH, MF
    BOTT, R
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1983, 308 (1505): : 523 - 615
  • [7] INDEX OF ELLIPTIC OPERATORS .2.
    ATIYAH, MF
    SEGAL, GB
    [J]. ANNALS OF MATHEMATICS, 1968, 87 (03) : 531 - &
  • [8] ATIYAH MF, 1968, ANN MATH, V87, P546, DOI 10.2307/1970717
  • [9] What is a chiral 2d CFT? And what does it have to do with extremal black holes?
    Balasubramanian, Vijay
    de Boer, Jan
    Sheikh-Jabbari, M. M.
    Simon, Joan
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2010, (02):
  • [10] BLACK-HOLE IN 3-DIMENSIONAL SPACETIME
    BANADOS, M
    TEITELBOIM, C
    ZANELLI, J
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (13) : 1849 - 1851