Corrosion mechanisms of high-entropy rare earth zirconate (Gd0.2Y0.2Er0.2Tm0.2Yb0.2)2Zr2O7 exposed to CMAS and multi-medium (NaVO3+CMAS)

被引:5
|
作者
Yan, Rongxue [1 ]
Liang, Wenping [1 ]
Miao, Qiang [1 ]
Zhao, Hui [1 ]
Liu, Ruixiang [1 ]
Dong, Meijing [1 ]
Zang, Kai [1 ]
Jia, Feilong [1 ]
Chang, Xiangle [1 ]
He, Xiping [1 ]
Gao, Xiguang [2 ]
Song, Yindong [2 ]
Tao, Xiaoma [3 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Nanjing 211106, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Jiangsu Prov Key Lab Aerosp Power Syst, Key Lab Aeroengine Thermal Environm & Struct, Minist Ind & Informat Technol,Coll Energy & Power, Nanjing 210016, Peoples R China
[3] Guangxi Univ, Sch Phys Sci & Technol, Univ East Rd 100, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal barrier coatings; High-entropy zirconate; CMAS; Multi-medium corrosion; Corrosion mechanism; THERMAL BARRIER COATINGS; OXIDES; PVD; DEGRADATION; IMPROVEMENT; RESISTANT; CERAMICS; KINETICS; BEHAVIOR; GLASS;
D O I
10.1016/j.jeurceramsoc.2023.12.039
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The wettability and thermal corrosion behavior of CMAS and CN (CMAS+NaVO3) on high-entropy rare-earth zirconate (Gd0.2Y0.2Er0.2Tm0.2Yb0.2)2Zr2O7 (HEZ) at high temperature were studied and compared. The results reveal that HEZ is a promising TBCs material with good anti-CMAS performance. However, HEZ exhibits poor resistance to CN, and the reaction layer fails to effectively alleviate the melt penetration. Based on the calculation of OB (optical basicity) theory, the possibility that NaVO3 can improve the reaction activity of CMAS is ruled out. It was determined that NaVO3 depolymerizes the internal network structure of the CMAS, resulting in a lower melting point and viscosity, stronger wettability, and permeability of CN compared to CMAS, thus posing greater harmfulness. The influence of rare earth elements with different ionic radii on the formation of multicomponent RE-crystal was researched by crystal structure analysis and first-principles calculation, providing a theoretical basis for the reliability of the corrosion mechanism.
引用
收藏
页码:3277 / 3295
页数:19
相关论文
共 50 条
  • [21] Preparation of (La0.2Nd0.2Sm0.2Gd0.2Yb0.2)2Zr2O7 high-entropy transparent ceramic using combustion synthesized nanopowder
    Zhang, Kuibao
    Li, Weiwei
    Zeng, Jianjun
    Deng, Ting
    Luo, Baozhu
    Zhang, Haibin
    Huang, Xuegang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 817
  • [22] The CMAS corrosion behavior of high-entropy (Y0.2Dy0.2Er0.2Tm0.2Yb0.2)4Hf3O12 hafnate material prepared by ultrafast high-temperature sintering (UHS)
    Ye, Fuxing
    Meng, Fanwei
    Luo, Tianyuan
    Qi, Hang
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (05) : 2185 - 2195
  • [23] High-entropy transparent (Y0.2La0.2Gd0.2Yb0.2Dy0.2)2Zr2O7 ceramics as novel phosphor materials with multi-wavelength excitation and emission properties
    Han, Wenhan
    Ye, Yucheng
    Lu, Kailei
    Wu, Yucheng
    Wang, Haomin
    Huang, Zhangyi
    Qi, Jianqi
    Lu, Tiecheng
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (01) : 143 - 149
  • [24] (Gd0.2Ho0.2Er0.2Yb0.2Lu0.2)2Si2O7 and (Sc0.2Ho0.2Er0.2Yb0.2Lu0.2)2Si2O7 high-entropy rare-earth disilicates as promising materials for environmental barrier coatings
    Luo, Zhongwei
    Jiang, Jianing
    Dong, Shujuan
    Zhou, Changling
    Lue, Kaiyue
    Xie, Yifeng
    Duan, Zhixing
    Huang, Yan
    Chen, Tingyang
    Deng, Longhui
    Cao, Xueqiang
    CERAMICS INTERNATIONAL, 2024, 50 (13) : 23342 - 23355
  • [25] High-entropy thermal barrier coating of rare-earth zirconate: A case study on (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 prepared by atmospheric plasma spraying
    Zhou, Lin
    Li, Fei
    Liu, Ji-Xuan
    Hu, Qing
    Bao, Weichao
    Wu, Yue
    Cao, Xueqiang
    Xu, Fangfang
    Zhang, Guo-Jun
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (15) : 5731 - 5739
  • [26] High-entropy (La0.2Dy0.2Er0.2Yb0.2Y0.2)2Zr2O7 oxide, a potential thermal barrier coating material with photoluminescence property sensitive to pressure
    Du, Mingrun
    Xiao, Yuhan
    Yang, Xuelian
    Ma, Yu
    Han, Yingdong
    Li, Zepeng
    Wei, Tong
    Zou, Yunling
    CERAMICS INTERNATIONAL, 2024, 50 (05) : 8010 - 8016
  • [27] Characterization of novel high-entropy (La0.2Nd0.2Sm0.2Dy0.2Yb0.2)2Zr2O7 electrospun ceramic nanofibers
    Li, Zeshuai
    Zhou, Feifei
    Xu, Baosheng
    Guo, Donghui
    CERAMICS INTERNATIONAL, 2022, 48 (09) : 12074 - 12078
  • [28] High-entropy(Y0.2Gd0.2Dy0.2Er0.2Yb0.2)2Hf2O7 ceramic: A promising thermal barrier coating material
    Longkang Cong
    Wei Li
    Jiancheng Wang
    Shengyue Gu
    Shouyang Zhang
    JournalofMaterialsScience&Technology, 2022, 101 (06) : 199 - 204
  • [29] High-entropy rare-earth disilicate (Lu0.2Yb0.2Er0.2Tm0.2Sc0.2)2Si2O7: A potential environmental barrier coating material
    Guo, Xiaotong
    Zhang, Yulei
    Li, Tao
    Zhang, Pengfei
    Shuai, Kang
    Li, Jie
    Shi, Xiaohong
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2022, 42 (08) : 3570 - 3578
  • [30] Ultrafast densification of high-entropy oxide (La0.2Nd0.2Sm0.2Eu0.2Gd0.2)2Zr2O7 by reactive flash sintering
    Mao, Hai-Rong
    Guo, Rui-Fen
    Cao, Yue
    Jin, Shen-Bao
    Qiu, Xiao-Ming
    Shen, Ping
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2021, 41 (04) : 2855 - 2860