Fisher and Shannon Functionals for Hyperbolic Diffusion

被引:3
作者
Caceres, Manuel O. [1 ,2 ,3 ]
Nizama, Marco [4 ,5 ]
Pennini, Flavia [6 ,7 ]
机构
[1] Ctr Atom Bariloche, Comis Nacl Energia Atom, Av E Bustillo 9500, RA-8400 San Carlos De Bariloche, Argentina
[2] Univ Nacl Cuyo, Inst Balseiro, Av E Bustillo 9500, RA-8400 San Carlos De Bariloche, Argentina
[3] Ctr Aton Bariloche, CONICET, Av E Bustillo 9500, RA-8400 San Carlos De Bariloche, Argentina
[4] Univ Nacl Comahue, Fac Ingn, Dept Fis, RA-8300 Neuquen, Argentina
[5] Univ Nacl Comahue, CONICET, RA-8300 Neuquen, Argentina
[6] Univ Nacl Mar del Plata UNMDP, Fac Ingn, Dept Fis, CONICET, RA-7600 Mar Del Plata, Argentina
[7] Univ Catolica Norte, Dept Fis, Av Angamos 0610, Antofagasta 1270709, Chile
关键词
hyperbolic diffusion; telegrapher's equation; Shannon entropy; Fisher information; Cramer-Rao bound; EQUATION; WAVES;
D O I
10.3390/e25121627
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The complexity measure for the distribution in space-time of a finite-velocity diffusion process is calculated. Numerical results are presented for the calculation of Fisher's information, Shannon's entropy, and the Cramer-Rao inequality, all of which are associated with a positively normalized solution to the telegrapher's equation. In the framework of hyperbolic diffusion, the non-local Fisher's information with the x-parameter is related to the local Fisher's information with the t-parameter. A perturbation theory is presented to calculate Shannon's entropy of the telegrapher's equation at long times, as well as a toy model to describe the system as an attenuated wave in the ballistic regime (short times).
引用
收藏
页数:16
相关论文
共 39 条
[21]   On a property of Gauss's law [J].
Marcinkiewicz, J .
MATHEMATISCHE ZEITSCHRIFT, 1939, 44 :612-618
[22]  
Marín E., 2016, Rev. mex. fís. E, V62, P1
[23]   On thermal waves [J].
Marin, E. .
EUROPEAN JOURNAL OF PHYSICS, 2013, 34 (05) :L83-L85
[24]  
Masoliver J., 1996, European Journal of Physics, V17, P190, DOI 10.1088/0143-0807/17/4/008
[25]  
Morse P.M., 1953, Methods of Theoretical Physics, P865
[26]   THE BEHAVIOR OF HYPERBOLIC HEAT-EQUATIONS SOLUTIONS NEAR THEIR PARABOLIC LIMITS [J].
NAGY, GB ;
ORTIZ, OE ;
REULA, OA .
JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (08) :4334-4356
[27]   Penetration of waves in global stochastic conducting media [J].
Nizama, Marco ;
Caceres, Manuel O. .
PHYSICAL REVIEW E, 2023, 107 (05)
[28]  
Pearson J. M., 1966, A Theory of Waves
[29]  
Pettersen K. H., 2009, An Anthology of Developments in Clinical Engineering and Bioimpedance: Festschrift for Sverre Grimnes
[30]   Fisher information of correlated stochastic processes [J].
Radaelli, Marco ;
Landi, Gabriel T. ;
Modi, Kavan ;
Binder, Felix C. .
NEW JOURNAL OF PHYSICS, 2023, 25 (05)