Automatic detection of Cryptosporidium in optical microscopy images using YOLOv5x: a comparative study

被引:1
作者
Salguero, Johan Sebastian Lopez [1 ,2 ]
Rendon, Melissa Rodriguez [1 ,2 ]
Valencia, Jessica Trivino [2 ]
Gil, Jorge Andres Cuellar [2 ]
Galvis, Carlos Andres Naranjo [2 ]
Londono, Oscar Moscoso [1 ]
Calderon, Cesar Leandro Londono
Osorioc, Fabio Augusto Gonzales
Soto, Reinel Tabares [3 ,4 ]
机构
[1] Univ Autonoma Manizales, Dept Fis & Matemat, Manizales 170001, Colombia
[2] Univ Autonoma Manizales, Dept Ciencias Basicas, Manizales 170001, Colombia
[3] Univ Autonoma Manizales, Dept Elect & Automatizac Ind, Manizales 170001, Colombia
[4] Univ Caldas, Dept Sistemas & Informat, Manizales 170001, Caldas, Colombia
关键词
Cryptosporidium parvum; images; convolutional neural networks; YOLOv5;
D O I
10.1139/bcb-2023-0059
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Here, a machine learning tool (YOLOv5) enables the detection of Cryptosporidium microorganisms using optical and phase contrast microscope images. The two databases were processed using 520 images (optical microscopy) and 1200 images (phase contrast microscopy). It used Python libraries to label, standardize the size, and crop the images to generate the input tensors to the YOLOv5 network (s, m, and l). It implemented two experiments using randomly initialized weights in optical and phase contrast microscope images. The other two experiments used the parameters for the best training time obtained before and after retraining the models. Metrics used to assess model accuracy were mean average accuracy, confusion matrix, and the F1 scores. All three metrics confirmed that the optimal model used the best epoch of optical imaging training and retraining with phase contrast imaging. Experiments with randomly initialized weights with optical imaging showed the lowest precision for Cryptosporidium detection. The most stable model was YOLOv5m, with the best results in all categories. However, the differences between all models are lower than 2%, and YOLOv5s is the best option for Cryptosporidium detection considering the differences in computational costs of the models.
引用
收藏
页码:538 / 549
页数:12
相关论文
共 33 条
[1]  
[Anonymous], 2022, LXML XML HTML PYTHON
[2]   COVID-19 detection in X-ray images using convolutional neural networks [J].
Arias-Garzon, Daniel ;
Alzate-Grisales, Jesus Alejandro ;
Orozco-Arias, Simon ;
Arteaga-Arteaga, Harold Brayan ;
Bravo-Ortiz, Mario Alejandro ;
Mora-Rubio, Alejandro ;
Saborit-Torres, Jose Manuel ;
Serrano, Joaquim aengel Montell ;
Vaya, Maria de la Iglesia ;
Cardona-Morales, Oscar ;
Tabares-Soto, Reinel .
MACHINE LEARNING WITH APPLICATIONS, 2021, 6
[3]  
Berke Olaf, 2020, Can Commun Dis Rep, V46, P192, DOI 10.14745/ccdr.v46i06a07
[4]   State-of-the-art machine learning techniques for melanoma skin cancer detection and classification: a comprehensive review [J].
Bhatt, Harsh ;
Shah, Vrunda ;
Shah, Krish ;
Shah, Ruju ;
Shah, Manan .
INTELLIGENT MEDICINE, 2023, 3 (03) :180-190
[5]   YOLOv3 Object Detection Algorithm with Feature Pyramid Attention for Remote Sensing Images [J].
Cheng, Zhe ;
Lv, Jingguo ;
Wu, Anqi ;
Qu, Ningning .
SENSORS AND MATERIALS, 2020, 32 (12) :4537-4558
[6]  
Chollet F., 2016, arXiv
[7]   The Pascal Visual Object Classes (VOC) Challenge [J].
Everingham, Mark ;
Van Gool, Luc ;
Williams, Christopher K. I. ;
Winn, John ;
Zisserman, Andrew .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) :303-338
[8]   Rich feature hierarchies for accurate object detection and semantic segmentation [J].
Girshick, Ross ;
Donahue, Jeff ;
Darrell, Trevor ;
Malik, Jitendra .
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, :580-587
[9]   A review of Cryptosporidium spp. and their detection in water [J].
Hassan, Eman M. ;
Ormeci, Banu ;
DeRosa, Maria C. ;
Dixon, Brent R. ;
Sattar, Syed A. ;
Iqbal, Asma .
WATER SCIENCE AND TECHNOLOGY, 2021, 83 (01) :1-25
[10]  
He K., 2016, 2016 IEEE C COMP VIS, DOI DOI 10.1109/CVPR.2016.90