MPFFPSDC: A multi-pooling feature fusion model for predicting synergistic drug combinations

被引:4
作者
Bao, Xin [1 ]
Sun, Jianqiang [1 ]
Yi, Ming [2 ]
Qiu, Jianlong [1 ]
Chen, Xiangyong [1 ]
Shuai, Stella C. [3 ]
Zhao, Qi [4 ]
机构
[1] Linyi Univ, Sch Automat & Elect Engn, Linyi 276000, Peoples R China
[2] China Univ Geosci, Sch Math & Phys, Wuhan 430000, Peoples R China
[3] Northwestern Univ, Biol Sci, Evanston, IL 60208 USA
[4] Univ Sci & Technol Liaoning, Sch Comp Sci & Software Engn, Anshan 114051, Peoples R China
基金
中国国家自然科学基金;
关键词
Combination therapy; Graph neural network; Attention mechanism; Model interpretability; Synergism prediction;
D O I
10.1016/j.ymeth.2023.06.006
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Drug combination therapies are common practice in the treatment of cancer, but not all combinations result in synergy. As traditional screening approaches are restricted in their ability to uncover synergistic drug combinations, computer-aided medicine is becoming a increasingly prevalent in this field. In this work, a predictive model of potential interactions between drugs named MPFFPSDC is presented, which can maintain the symmetry of drug inputs and eliminate inconsistencies in predictive results caused by different drug inputting sequences or positions. The experimental results show that MPFFPSDC outperforms comparative models in major performance indicators and exhibits better generalization for independent data. Furthermore, the case study demonstrates that our model can capture molecular substructures that contribute to the synergistic effect of two drugs. These results indicate that MPFFPSDC not only offers strong predictive performance, but also has good model interpretability that may provide new insights for the study of drug interaction mechanisms and the development of new drugs.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 51 条
  • [1] An Overview of Molecular Modeling for Drug Discovery with Specific Illustrative Examples of Applications
    Aminpour, Maral
    Montemagno, Carlo
    Tuszynski, Jack A.
    [J]. MOLECULES, 2019, 24 (09):
  • [2] A community computational challenge to predict the activity of pairs of compounds
    Bansal, Mukesh
    Yang, Jichen
    Karan, Charles
    Menden, Michael P.
    Costello, James C.
    Tang, Hao
    Xiao, Guanghua
    Li, Yajuan
    Allen, Jeffrey
    Zhong, Rui
    Chen, Beibei
    Kim, Minsoo
    Wang, Tao
    Heiser, Laura M.
    Realubit, Ronald
    Mattioli, Michela
    Alvarez, Mariano J.
    Shen, Yao
    Gallahan, Daniel
    Singer, Dinah
    Saez-Rodriguez, Julio
    Xie, Yang
    Stolovitzky, Gustavo
    Califano, Andrea
    Abbuehl, Jean-Paul
    Altman, Russ B.
    Balcome, Shawn
    Bell, Ana
    Bender, Andreas
    Berger, Bonnie
    Bernard, Jonathan
    Bieberich, Andrew A.
    Borboudakis, Giorgos
    Chan, Christina
    Chen, Ting-Huei
    Choi, Jaejoon
    Coelho, Luis Pedro
    Creighton, Chad J.
    Dampier, Will
    Davisson, V. Jo
    Deshpande, Raamesh
    Diao, Lixia
    Di Camillo, Barbara
    Dundar, Murat
    Ertel, Adam
    Goswami, Chirayu P.
    Gottlieb, Assaf
    Gould, Michael N.
    Goya, Jonathan
    Grau, Michael
    [J]. NATURE BIOTECHNOLOGY, 2014, 32 (12) : 1213 - +
  • [3] The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity
    Barretina, Jordi
    Caponigro, Giordano
    Stransky, Nicolas
    Venkatesan, Kavitha
    Margolin, Adam A.
    Kim, Sungjoon
    Wilson, Christopher J.
    Lehar, Joseph
    Kryukov, Gregory V.
    Sonkin, Dmitriy
    Reddy, Anupama
    Liu, Manway
    Murray, Lauren
    Berger, Michael F.
    Monahan, John E.
    Morais, Paula
    Meltzer, Jodi
    Korejwa, Adam
    Jane-Valbuena, Judit
    Mapa, Felipa A.
    Thibault, Joseph
    Bric-Furlong, Eva
    Raman, Pichai
    Shipway, Aaron
    Engels, Ingo H.
    Cheng, Jill
    Yu, Guoying K.
    Yu, Jianjun
    Aspesi, Peter, Jr.
    de Silva, Melanie
    Jagtap, Kalpana
    Jones, Michael D.
    Wang, Li
    Hatton, Charles
    Palescandolo, Emanuele
    Gupta, Supriya
    Mahan, Scott
    Sougnez, Carrie
    Onofrio, Robert C.
    Liefeld, Ted
    MacConaill, Laura
    Winckler, Wendy
    Reich, Michael
    Li, Nanxin
    Mesirov, Jill P.
    Gabriel, Stacey B.
    Getz, Gad
    Ardlie, Kristin
    Chan, Vivien
    Myer, Vic E.
    [J]. NATURE, 2012, 483 (7391) : 603 - 607
  • [4] Pharmacogenomic analysis: Correlating molecular substructure classes with microarray gene expression data
    Blower P.E.
    Yang C.
    Fligner M.A.
    Verducci J.S.
    Yu L.
    Richman S.
    Weinstein J.N.
    [J]. The Pharmacogenomics Journal, 2002, 2 (4) : 259 - 271
  • [5] MicroRNAs and complex diseases: from experimental results to computational models
    Chen, Xing
    Xie, Di
    Zhao, Qi
    You, Zhu-Hong
    [J]. BRIEFINGS IN BIOINFORMATICS, 2019, 20 (02) : 515 - 539
  • [6] A transformer-based model to predict peptide-HLA class I binding and optimize mutated peptides for vaccine design
    Chu, Yanyi
    Zhang, Yan
    Wang, Qiankun
    Zhang, Lingfeng
    Wang, Xuhong
    Wang, Yanjing
    Salahub, Dennis Russell
    Xu, Qin
    Wang, Jianmin
    Jiang, Xue
    Xiong, Yi
    Wei, Dong-Qing
    [J]. NATURE MACHINE INTELLIGENCE, 2022, 4 (03) : 300 - +
  • [7] DTI-CDF: a cascade deep forest model towards the prediction of drug-target interactions based on hybrid features
    Chu, Yanyi
    Kaushik, Aman Chandra
    Wang, Xiangeng
    Wang, Wei
    Zhang, Yufang
    Shan, Xiaoqi
    Salahub, Dennis Russell
    Xiong, Yi
    Wei, Dong-Qing
    [J]. BRIEFINGS IN BIOINFORMATICS, 2021, 22 (01) : 451 - 462
  • [8] Hierarchical graph representation learning for the prediction of drug-target binding affinity
    Chu, Zhaoyang
    Huang, Feng
    Fu, Haitao
    Quan, Yuan
    Zhou, Xionghui
    Liu, Shichao
    Zhang, Wen
    [J]. INFORMATION SCIENCES, 2022, 613 : 507 - 523
  • [9] In vivo genome-wide CRISPR screen reveals breast cancer vulnerabilities and synergistic mTOR/Hippo targeted combination therapy
    Dai, Meiou
    Yan, Gang
    Wang, Ni
    Daliah, Girija
    Edick, Ashlin M.
    Poulet, Sophie
    Boudreault, Julien
    Ali, Suhad
    Burgos, Sergio A.
    Lebrun, Jean-Jacques
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [10] Approaches to modernize the combination drug development paradigm
    Day, Daphne
    Siu, Lillian L.
    [J]. GENOME MEDICINE, 2016, 8