Accelerating material design with the generative toolkit for scientific discovery

被引:19
作者
Manica, Matteo [1 ]
Born, Jannis [1 ]
Cadow, Joris [1 ]
Christofidellis, Dimitrios [1 ]
Dave, Ashish [2 ]
Clarke, Dean [2 ]
Teukam, Yves Gaetan Nana [1 ]
Giannone, Giorgio [1 ]
Hoffman, Samuel C. [3 ]
Buchan, Matthew [2 ]
Chenthamarakshan, Vijil [3 ]
Donovan, Timothy [2 ]
Hsu, Hsiang Han [4 ]
Zipoli, Federico [1 ]
Schilter, Oliver [1 ]
Kishimoto, Akihiro [4 ]
Hamada, Lisa [4 ]
Padhi, Inkit [3 ]
Wehden, Karl [3 ]
McHugh, Lauren [3 ]
Khrabrov, Alexy [5 ]
Das, Payel [3 ]
Takeda, Seiji [4 ]
Smith, John R. [3 ]
机构
[1] IBM Res Europe Zurich, Ruschlikon, Switzerland
[2] IBM Res UK, Hursley, England
[3] IBM Res Yorktown Hts, New York, NY USA
[4] IBM Res Tokyo, Tokyo, Japan
[5] IBM Res Almaden, San Jose, CA USA
关键词
DEEP; DDR1;
D O I
10.1038/s41524-023-01028-1
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
With the growing availability of data within various scientific domains, generative models hold enormous potential to accelerate scientific discovery. They harness powerful representations learned from datasets to speed up the formulation of novel hypotheses with the potential to impact material discovery broadly. We present the Generative Toolkit for Scientific Discovery (GT4SD). This extensible open-source library enables scientists, developers, and researchers to train and use state-of-the-art generative models to accelerate scientific discovery focused on organic material design.
引用
收藏
页数:6
相关论文
共 64 条
  • [1] Abid A, 2019, Arxiv, DOI [arXiv:1906.02569, DOI 10.48550/ARXIV.1906.02569]
  • [2] Anand N., 2022, arXiv
  • [3] Natural products in drug discovery: advances and opportunities
    Atanasov, Atanas G.
    Zotchev, Sergey B.
    Dirsch, Verena M.
    Supuran, Claudiu T.
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2021, 20 (03) : 200 - 216
  • [4] Bengio E, 2021, ADV NEUR IN, V34
  • [5] Bengio Y, 2022, Arxiv, DOI arXiv:2111.09266
  • [6] REINVENT 2.0: An AI Tool for De Novo Drug Design
    Blaschke, Thomas
    Arus-Pous, Josep
    Chen, Hongming
    Margreitter, Christian
    Tyrchan, Christian
    Engkvist, Ola
    Papadopoulos, Kostas
    Patronov, Atanas
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (12) : 5918 - 5922
  • [7] Regression Transformer enables concurrent sequence regression and generation for molecular language modelling
    Born, Jannis
    Manica, Matteo
    [J]. NATURE MACHINE INTELLIGENCE, 2023, 5 (04) : 432 - +
  • [8] Data-driven molecular design for discovery and synthesis of novel ligands: a case study on SARS-CoV-2
    Born, Jannis
    Manica, Matteo
    Cadow, Joris
    Markert, Greta
    Mill, Nil Adell
    Filipavicius, Modestas
    Janakarajan, Nikita
    Cardinale, Antonio
    Laino, Teodoro
    Rodriguez Martinez, Maria
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2021, 2 (02):
  • [9] PaccMannRL: De novo generation of hit-like anticancer molecules from transcriptomic data via reinforcement learning
    Born, Jannis
    Manica, Matteo
    Oskooei, Ali
    Cadow, Joris
    Markert, Greta
    Martinez, Maria Rodriguez
    [J]. ISCIENCE, 2021, 24 (04)
  • [10] GuacaMol: Benchmarking Models for de Novo Molecular Design
    Brown, Nathan
    Fiscato, Marco
    Segler, Marwin H. S.
    Vaucher, Alain C.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (03) : 1096 - 1108