Catalytic Defect-Repairing Using Manganese Ions for Hard Carbon Anode with High-Capacity and High-Initial-Coulombic-Efficiency in Sodium-Ion Batteries

被引:154
|
作者
Zhao, Jiahua [1 ,2 ]
He, Xiang-Xi [1 ,2 ]
Lai, Wei-Hong [3 ]
Yang, Zhuo [3 ]
Liu, Xiao-Hao [1 ]
Li, Lin [2 ]
Qiao, Yun [1 ]
Xiao, Yao [2 ]
Li, Li [1 ,4 ]
Wu, Xingqiao [2 ]
Chou, Shu-Lei [2 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Wenzhou Univ, Inst Carbon Neutralizat, Coll Chem & Mat Engn, Wenzhou 325035, Zhejiang, Peoples R China
[3] Univ Wollongong, Inst Superconducting & Elect Mat, Australian Inst Innovat Mat, Innovat Campus, Wollongong, NSW 2500, Australia
[4] Nankai Univ, Lab Adv Energy Mat Chem, Minist Educ, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
catalytic defect-repairing; hard carbon; high-capacity; high-initial-coulombic-efficiency; sodium-ion batteries; SOFT CARBON; GRAPHITIZATION; INSERTION; GRAPHITE;
D O I
10.1002/aenm.202300444
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hard carbon (HC) anodes have shown extraordinary promise for sodium-ion batteries, but are limited to their poor initial coulombic efficiency (ICE) and low practical specific capacity due to the large amount of defects. These defects with oxygen containing groups cause irreversible sites for Na+ ions. Highly graphited carbon decreases defects, while potentially blocking diffusion paths of Na+ ions. Therefore, molecular-level control of graphitization of hard carbon with open accessible channels for Na+ ions is key to achieve high-performance hard carbon. Moreover, it is challenging to design a conventional method to obtain HCs with both high ICE and capacity. Herein, a universal strategy is developed as manganese ions-assisted catalytic carbonization to precisely tune graphitization degree, eliminate defects, and maintain effective Na+ ions paths. The as-prepared hard carbon has a high ICE of 92.05% and excellent cycling performance. Simultaneously, a sodium storage mechanism of "adsorption-intercalation-pore filling-sodium cluster formation" is proposed, and a clear description given of the boundaries of the pore structure and the specific dynamic process of pore filling.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Antimony/Porous Biomass Carbon Nanocomposites as High-Capacity Anode Materials for Sodium-Ion Batteries
    Zhang, Xiaoli
    Li, Pengxin
    Zang, Rui
    Wang, Shijian
    Zhu, Ye
    Li, Cong
    Wang, Guoxiu
    CHEMISTRY-AN ASIAN JOURNAL, 2017, 12 (01) : 116 - 121
  • [22] SnSe Nanosheet Array on Carbon Cloth as a High-Capacity Anode for Sodium-Ion Batteries
    Yang, Wenlong
    Chen, Yuncai
    Yin, Xingxing
    Lai, Xiaofang
    Wang, Jun
    Jian, Jikang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (36) : 42811 - 42822
  • [23] Toward high-performance hard carbon as an anode for sodium-ion batteries: Demineralization of biomass as a critical step
    Susanti, Ratna Frida
    Alvin, Stevanus
    Kim, Jaehoon
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2020, 91 (91) : 317 - 329
  • [24] Low-Temperature Growth of Hard Carbon with Graphite Crystal for Sodium-Ion Storage with High Initial Coulombic Efficiency: A General Method
    Zhao, Xun
    Ding, Yuan
    Xu, Qi
    Yu, Xiao
    Liu, Yong
    Shen, Hui
    ADVANCED ENERGY MATERIALS, 2019, 9 (10)
  • [25] Bamboo waste derived hard carbon as high performance anode for sodium-ion batteries
    Gao, Tengteng
    Zhou, Youhang
    Jiang, Yizhi
    Xue, Zhao
    Ding, Yanhuai
    DIAMOND AND RELATED MATERIALS, 2024, 150
  • [26] Biomass-derived hard carbon anodes: An overview on strategies of improving initial Coulombic efficiency for sodium-ion batteries
    Liu, Luqiong
    Xu, Fenghua
    Zou, Anbang
    Yu, Zhengzheng
    Jiang, Jiaxin
    Yin, Shuangfeng
    Weng, Baicheng
    MATERIALS TODAY COMMUNICATIONS, 2024, 41
  • [27] High-Capacity Anode for Sodium-Ion Batteries Using Hard Carbons Derived from Polyurea-Cross-Linked Silica Xerogel Powders
    Sundaramoorthy, Santhoshkumar
    Soni, Rushi U.
    Owusu, Stephen Yaw
    Bhattacharya, Sutapa
    Doulah, A. B. M. Shaheen ud
    Edlabadkar, Vaibhav A.
    Sotiriou-Leventis, Chariklia
    Choudhury, Amitava
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (20): : 9289 - 9299
  • [28] A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries
    Sun, Jie
    Lee, Hyun-Wook
    Pasta, Mauro
    Yuan, Hongtao
    Zheng, Guangyuan
    Sun, Yongming
    Li, Yuzhang
    Cui, Yi
    NATURE NANOTECHNOLOGY, 2015, 10 (11) : 980 - U184
  • [29] Low-Surface-Area Nitrogen-Doped Carbon Submicrospheres as High-Coulombic-Efficiency and High-Capacity Anodes for Practical Sodium-Ion Batteries
    Tao, Hongwei
    Li, Sha
    Zhao, Zhijun
    He, Zhengyou
    Wang, Kangli
    Jiang, Kai
    Hu, Haitao
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (22) : 28673 - 28682
  • [30] Tuning the Mesopore Structure of Polyethylene Glycol Terephthalate (PET)-Derived Hard Carbon for High-Capacity Sodium-Ion Batteries
    Wang, Chupeng
    Luo, Mingsheng
    Song, Shiqi
    Tang, Maochong
    Wang, Xiaoxia
    Liu, Hui
    MATERIALS, 2025, 18 (05)