Multi-omics analysis identifies drivers of protein phosphorylation

被引:4
作者
Zhang, Tian [1 ]
Keele, Gregory R. [2 ]
Gyuricza, Isabela Gerdes [2 ]
Vincent, Matthew [2 ]
Brunton, Catherine [2 ]
Bell, Timothy A. [3 ]
Hock, Pablo [3 ]
Shaw, Ginger D. [3 ]
Munger, Steven C. [2 ]
de Villena, Fernando Pardo-Manuel [3 ,4 ]
Ferris, Martin T. [3 ]
Paulo, Joao A. [1 ]
Gygi, Steven P. [1 ]
Churchill, Gary A. [2 ]
机构
[1] Harvard Med Sch, Boston, MA 02115 USA
[2] Jackson Lab, Bar Harbor, ME 04609 USA
[3] Univ N Carolina, Dept Genet, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
基金
美国国家卫生研究院;
关键词
Collaborative Cross; Phosphorylation; Quantitative trait loci (QTL); Multi-omics; Medation analysis; Phosphorylation regulation; PROPIONYL-COA CARBOXYLASE; TRANSCRIPTIONAL REGULATION; COLLABORATIVE CROSS; SUBSPECIFIC ORIGIN; GENETIC-VARIATION; LUNG-CANCER; CELL-CYCLE; KINASE; MODEL; RECEPTOR;
D O I
10.1186/s13059-023-02892-2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundPhosphorylation of proteins is a key step in the regulation of many cellular processes including activation of enzymes and signaling cascades. The abundance of a phosphorylated peptide (phosphopeptide) is determined by the abundance of its parent protein and the proportion of target sites that are phosphorylated.ResultsWe quantified phosphopeptides, proteins, and transcripts in heart, liver, and kidney tissue samples of mice from 58 strains of the Collaborative Cross strain panel. We mapped similar to 700 phosphorylation quantitative trait loci (phQTL) across the three tissues and applied genetic mediation analysis to identify causal drivers of phosphorylation. We identified kinases, phosphatases, cytokines, and other factors, including both known and potentially novel interactions between target proteins and genes that regulate site-specific phosphorylation. Our analysis highlights multiple targets of pyruvate dehydrogenase kinase 1 (PDK1), a regulator of mitochondrial function that shows reduced activity in the NZO/HILtJ mouse, a polygenic model of obesity and type 2 diabetes.ConclusionsTogether, this integrative multi-omics analysis in genetically diverse CC strains provides a powerful tool to identify regulators of protein phosphorylation. The data generated in this study provides a resource for further exploration.
引用
收藏
页数:29
相关论文
共 50 条
  • [21] DNA methylation exploration for ARDS: a multi-omics and multi-microarray interrelated analysis
    Zhang, Shi
    Wu, Zongsheng
    Xie, Jianfeng
    Yang, Yi
    Wang, Lei
    Qiu, Haibo
    JOURNAL OF TRANSLATIONAL MEDICINE, 2019, 17 (01)
  • [22] Differential protein expression and metabolite profiling in glaucoma: Insights from a multi-omics analysis
    Mok, Jeong-hun
    Park, Do Young
    Han, Jong Chul
    BIOFACTORS, 2024, 50 (06) : 1220 - 1235
  • [23] Multi-Omics Analysis Reveals Immune Infiltration and Clinical Significance of Phosphorylation Modification Enzymes in Lung Adenocarcinoma
    Long, Deyu
    Ding, Yanheng
    Wang, Peng
    Wei, Lili
    Ma, Ketao
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (03)
  • [24] Omics and Multi-Omics in IBD: No Integration, No Breakthroughs
    Fiocchi, Claudio
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (19)
  • [25] Integrative Multi-omics Analysis of Childhood Aggressive Behavior
    Hagenbeek, Fiona A.
    van Dongen, Jenny
    Pool, Rene
    Roetman, Peter J.
    Harms, Amy C.
    Hottenga, Jouke Jan
    Kluft, Cornelis
    Colins, Olivier F.
    van Beijsterveldt, Catharina E. M.
    Fanos, Vassilios
    Ehli, Erik A.
    Hankemeier, Thomas
    Vermeiren, Robert R. J. M.
    Bartels, Meike
    Dejean, Sebastien
    Boomsma, Dorret, I
    BEHAVIOR GENETICS, 2023, 53 (02) : 101 - 117
  • [26] Integrative Multi-omics Analysis of Childhood Aggressive Behavior
    Fiona A. Hagenbeek
    Jenny van Dongen
    René Pool
    Peter J. Roetman
    Amy C. Harms
    Jouke Jan Hottenga
    Cornelis Kluft
    Olivier F. Colins
    Catharina E. M. van Beijsterveldt
    Vassilios Fanos
    Erik A. Ehli
    Thomas Hankemeier
    Robert R. J. M. Vermeiren
    Meike Bartels
    Sébastien Déjean
    Dorret I. Boomsma
    Behavior Genetics, 2023, 53 : 101 - 117
  • [27] MDSi: Multi-omics Database for Setaria italica
    Li, Xukai
    Hou, Siyu
    Feng, Mengmeng
    Xia, Rui
    Li, Jiawei
    Tang, Sha
    Han, Yuanhuai
    Gao, Jianhua
    Wang, Xingchun
    BMC PLANT BIOLOGY, 2023, 23 (01)
  • [28] Integrative analysis of multi-omics data for liquid biopsy
    Chen, Geng
    Zhang, Jing
    Fu, Qiaoting
    Taly, Valerie
    Tan, Fei
    BRITISH JOURNAL OF CANCER, 2023, 128 (04) : 505 - 518
  • [29] Editorial: An insight into multi-omics analysis of dementia disorders
    Srivastava, Prachi
    Tiwari, Anshul
    Ahmad, Khurshid
    Srivastava, Neha
    Garg, Prekshi
    FRONTIERS IN GENETICS, 2023, 14
  • [30] Yak genome database: a multi-omics analysis platform
    Jiang, Hui
    Chai, Zhi-Xin
    Chen, Xiao-Ying
    Zhang, Cheng-Fu
    Zhu, Yong
    Ji, Qiu-Mei
    Xin, Jin-Wei
    BMC GENOMICS, 2024, 25 (01)