Efficient heat dissipation perovskite lasers using a high-thermal-conductivity diamond substrate

被引:8
作者
Li, Guohui [1 ,2 ,3 ,4 ]
Hou, Zhen [1 ]
Wei, Yanfu [1 ]
Zhao, Ruofan [1 ]
Ji, Ting [1 ]
Wang, Wenyan [1 ]
Wen, Rong [1 ]
Zheng, Kaibo [3 ,4 ]
Yu, Shengwang [1 ]
Cui, Yanxia [1 ,2 ]
机构
[1] Taiyuan Univ Technol, Coll Phys & Optoelect, Key Lab Interface Sci & Engn Adv Mat, Key Lab Adv Transducers & Intelligent Control Syst, Taiyuan 030024, Peoples R China
[2] Shanxi Zheda Inst Adv Mat & Chem Engn, Taiyuan 030024, Peoples R China
[3] Lund Univ, Div Chem Phys, Box 124, S-22100 Lund, Sweden
[4] Lund Univ, NanoLund, Box 124, S-22100 Lund, Sweden
关键词
perovskite; lasers; heat dissipation; diamond; OPTICAL-PROPERTIES;
D O I
10.1007/s40843-022-2355-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Efficient heat dissipation that can minimize temperature increases in device is critical in realizing electrical injection lasers. High-thermal-conductivity diamonds are promising for overcoming heat dissipation limitations for perovskite lasers. In this study, we demonstrate a perovskite nanoplatelet laser on a diamond substrate that can efficiently dissipate heat generated during optical pumping. Tight optical confinement is also realized by introducing a thin SiO2 gap layer between nanoplatelets and the diamond substrate. The demonstrated laser features a Q factor of similar to 1962, a lasing threshold of 52.19 mu J cm(-2), and a low pump-density-dependent temperature sensitivity (similar to 0.56 +/- 0.01 K cm(2) mu J(-1)) through the incorporation of the diamond substrate. We believe our study could inspire the development of electrically driven perovskite lasers.
引用
收藏
页码:2400 / 2407
页数:8
相关论文
共 52 条
  • [1] Carvill J., 1994, MECH ENG DATA HDB, DOI DOI 10.1016/B978-0-08-051135-1.50008-X
  • [2] Excitonic Effects in Methylammonium Lead Halide Perovskites
    Chen, Xihan
    Lu, Haipeng
    Yang, Ye
    Beard, Matthew C.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2018, 9 (10): : 2595 - 2603
  • [3] Electrical Pumping of Perovskite Diodes: Toward Stimulated Emission
    Cho, Changsoon
    Antrack, Tobias
    Kroll, Martin
    An, Qingzhi
    Barschneider, Toni R.
    Fischer, Axel
    Meister, Stefan
    Vaynzof, Yana
    Leo, Karl
    [J]. ADVANCED SCIENCE, 2021, 8 (17)
  • [4] Clark J, 2010, NAT PHOTONICS, V4, P438, DOI [10.1038/NPHOTON.2010.160, 10.1038/nphoton.2010.160]
  • [5] Promises and challenges of perovskite solar cells
    Correa-Baena, Juan-Pablo
    Saliba, Michael
    Buonassisi, Tonio
    Graetzel, Michael
    Abate, Antonio
    Tress, Wolfgang
    Hagfeldt, Anders
    [J]. SCIENCE, 2017, 358 (6364) : 739 - 744
  • [6] Ultralow-Threshold Continuous-Wave Room-Temperature Crystal-Fiber/Nanoperovskite Hybrid Lasers for All-Optical Photonic Integration
    Duc Huy Nguyen
    Sun, Jia-Yuan
    Lo, Chia-Yao
    Liu, Jia-Ming
    Tsai, Wan-Shao
    Li, Ming-Hung
    Yang, Sin-Jhang
    Lin, Cheng-Chia
    Tzeng, Shien-Der
    Ma, Yuan-Ron
    Lin, Ming-Yi
    Lai, Chien-Chih
    [J]. ADVANCED MATERIALS, 2021, 33 (12)
  • [7] Reality or fantasy-Perovskite semiconductor laser diodes
    Gao, Wei
    Yu, Siu Fung
    [J]. ECOMAT, 2021, 3 (01)
  • [8] A nano-liter droplet-based microfluidic reactor serves as continuous large-scale production of inorganic perovskite nanocrystals
    Geng, Yuhao
    Guo, Jiazhuang
    Ling, Si Da
    Wu, Xingjiang
    Liu, Hengyuan
    Chen, Zhuo
    Chen, Su
    Xu, Jianhong
    [J]. SCIENCE CHINA-MATERIALS, 2022, 65 (10) : 2746 - 2754
  • [9] Organic solid-state integrated amplifiers and lasers
    Grivas, Christos
    Pollnau, Markus
    [J]. LASER & PHOTONICS REVIEWS, 2012, 6 (04) : 419 - 462
  • [10] Refractive Index Dispersion of Organic-Inorganic Hybrid Halide Perovskite CH3NH3PbX3 (XCl, Br, I) Single Crystals
    He, Chongjun
    Zha, Guoan
    Deng, Chenguang
    An, Yang
    Mao, Rong
    Liu, Youwen
    Lu, Yuangang
    Chen, Ziyun
    [J]. CRYSTAL RESEARCH AND TECHNOLOGY, 2019, 54 (05)