A rapid and effective method for alloy materials design via sample data transfer machine learning

被引:25
作者
Jiang, Lei [1 ]
Zhang, Zhihao [1 ,2 ,3 ]
Hu, Hao [1 ]
He, Xingqun [1 ]
Fu, Huadong [1 ,2 ,3 ]
Xie, Jianxin [1 ,2 ,3 ]
机构
[1] Univ Sci & Technol Beijing, Beijing Adv Innovat Ctr Mat Genome Engn, Beijing 100083, Peoples R China
[2] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, Beijing Lab Met Mat & Proc Modern Transportat, Beijing 100083, Peoples R China
[3] Univ Sci & Technol Beijing, Key Lab Adv Mat Proc MOE, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
HIGH-STRENGTH; MECHANICAL-PROPERTIES; ALUMINUM-ALLOYS; MG; CU; MICROSTRUCTURE; BEHAVIOR; DISCOVERY; PROPERTY; PHASE;
D O I
10.1038/s41524-023-00979-9
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
One of the challenges in material design is to rapidly develop new materials or improve the performance of materials by utilizing the data and knowledge of existing materials. Here, a rapid and effective method of alloy material design via data transfer learning is proposed to efficiently design new alloys using existing data. A new type of aluminum alloy (E2 alloy) with ultra strength and high toughness previously developed by the authors is used as an example. An optimal three-stage solution-aging treatment process (T66R) was efficiently designed transferring 1053 pieces of process-property relationship data of existing AA7xxx commercial aluminum alloys. It realizes the substantial improvement of strength and plasticity of E2 alloy simultaneously, which is of great significance for lightweight of high-end equipment. Meanwhile, the microstructure analysis clarifies the mechanism of alloy performance improvement. This study shows that transferring the existing alloy data is an effective method to design new alloys.
引用
收藏
页数:12
相关论文
共 52 条
[1]   PRECIPITATION HARDENING [J].
ARDELL, AJ .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1985, 16 (12) :2131-2165
[2]   Recent advances in ageing of 7xxx series aluminum alloys: A physical metallurgy perspective [J].
Azarniya, Abolfazl ;
Taheri, Ali Karimi ;
Taheri, Kourosh Karimi .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 781 :945-983
[3]   GP-zones in Al-Zn-Mg alloys and their role in artificial aging [J].
Berg, LK ;
Gjonnes, J ;
Hansen, V ;
Li, XZ ;
Knutson-Wedel, M ;
Waterloo, G ;
Schryvers, D ;
Wallenberg, LR .
ACTA MATERIALIA, 2001, 49 (17) :3443-3451
[4]   Secondary ageing in an aluminium alloy 7050 [J].
Buha, J. ;
Lumley, R. N. ;
Crosky, A. G. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 492 (1-2) :1-10
[5]   Experimental and DFT characterization of η′ nano-phase and its interfaces in Al-Zn-Mg-Cu alloys [J].
Cao, Fuhua ;
Zheng, Jingxu ;
Jiang, Yong ;
Chen, Bin ;
Wang, Yiren ;
Hu, Tao .
ACTA MATERIALIA, 2019, 164 :207-219
[6]   Microstructure Evolution and Tensile Mechanical Properties of Thixoformed High Performance Al-Zn-Mg-Cu Alloy [J].
Chen, Gang ;
Chen, Qiang ;
Wang, Bo ;
Du, Zhi-ming .
METALS AND MATERIALS INTERNATIONAL, 2015, 21 (05) :897-906
[7]   Microstructures and mechanical properties of age-formed 7050 aluminum alloy [J].
Chen, J. F. ;
Zhen, L. ;
Jiang, J. T. ;
Yang, L. ;
Shao, W. Z. ;
Zhang, B. Y. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2012, 539 :115-123
[8]   Effect of Zn Content on the Microstructure and Properties of Super-High Strength Al-Zn-Mg-Cu Alloys [J].
Chen, Ziyong ;
Mo, Yuanke ;
Nie, Zuoren .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2013, 44A (08) :3910-3920
[9]   An atomic scale structural investigation of nanometre-sized η precipitates in the 7050 aluminium alloy [J].
Chung, Tsai-Fu ;
Yang, Yo-Lun ;
Shiojiri, Makoto ;
Hsiao, Chien-Nan ;
Li, Wei-Chih ;
Tsao, Cheng-Si ;
Shi, Zhusheng ;
Lin, Jianguo ;
Yang, Jer-Ren .
ACTA MATERIALIA, 2019, 174 :351-368
[10]  
Dai W, 2007, P 24 INT C MACH LEAR, P193, DOI DOI 10.1145/1273496.1273521