Nitric oxide and brassinosteroids enhance chromium stress tolerance in Glycine max L. (Merr.) by modulating antioxidative defense and glyoxalase systems

被引:11
|
作者
Basit, Farwa [1 ,2 ]
Tao, Ji [2 ]
An, Jianyu [2 ]
Song, Xiaoyu [2 ]
Sheteiwy, Mohamed Salah [3 ]
Holford, Paul [4 ]
Hu, Jin [1 ,2 ]
Josko, Izabela [5 ]
Guan, Yajing [1 ,2 ]
机构
[1] Zhejiang Univ, Hainan Res Inst, Sanya 572025, Peoples R China
[2] Zhejiang Univ, Adv Seed Inst, Coll Agr & Biotechnol, Seed Sci Ctr, Hangzhou 310058, Peoples R China
[3] Mansoura Univ, Fac Agr, Dept Agron, Mansoura 35516, Egypt
[4] Western Sydney Univ, Sch Sci, Locked Bag 1797, Penrith, NSW 2751, Australia
[5] Univ Life Sci Lublin, Inst Plant Genet Breeding & Biotechnol, Lublin, Poland
基金
中国国家自然科学基金; 海南省自然科学基金;
关键词
Biochemical attributes; Metal uptake; Oxidative stress; Soybean; Tolerance mechanism; OXIDATIVE DAMAGE; SALICYLIC-ACID; HYDROGEN-PEROXIDE; COPPER TOXICITY; GLUTATHIONE; SEEDLINGS; RICE; ACCUMULATION; METABOLISM; MITIGATE;
D O I
10.1007/s11356-023-25901-0
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Chromium (Cr) contamination of agricultural soils is a major threat to human and plant health worldwide and causes reductions in plant growth and crop yields. 24-epibrassinolide (EBL) and nitric oxide (NO) have been shown to ameliorate the reductions in growth caused by the stresses induced by heavy metals; however, the interactions between EBL and NO on the alleviation of Cr-induced phytotoxicity have been poorly studied. Hence, this study was undertaken to examine any beneficial effects of EBL (0.01 mu M) and NO (100 mu M), applied alone or in combination, on the mitigation of stress induced by Cr (100 mu M) in soybean seedlings. Although EBL and NO applied alone reduced the toxic effects of Cr, the combined treatment had the greatest effect. Mitigation of Cr intoxication occurred via reduced Cr uptake and translocation and by ameliorating reductions in water contents, light-harvesting pigments, and other photosynthetic parameters. In addition, the two hormones increased the activity of enzymatic and non-enzymatic defense mechanisms increasing the scavenging of reactive oxygen species, thereby reducing membrane damage and electrolyte leakage. Furthermore, the hormones reduced the accumulation of the toxic compound, methylglyoxal, by amplifying activities of glyoxalase I and glyoxalase II. Thus, applications of NO and EBL can significantly mitigate Cr-phytotoxicity when cultivating soybean plants in Cr-contaminated soils. However, further more-in depth studies including field investigations parallel with calculations of cost to profit ratios and yield losses are requested to validate the effectiveness of NO and/or EBL for remediation agents in Cr-contaminated soils with using key biomarkers (i.e., oxidative stress, antioxidant defense, and osmoprotectants) involved in the uptake, accumulation, and attenuation of Cr toxicity tested in our study.
引用
收藏
页码:51638 / 51653
页数:16
相关论文
共 50 条
  • [41] Physiological effects of cerium oxide nanoparticles on the photosynthesis and water use efficiency of soybean (Glycine max (L.) Merr.)
    Cao, Zhiming
    Stowers, Cheyenne
    Rossi, Lorenzo
    Zhang, Weilan
    Lombardini, Leonardo
    Ma, Xingmao
    ENVIRONMENTAL SCIENCE-NANO, 2017, 4 (05) : 1086 - 1094
  • [42] Initial Sterilization of Soil Affected Interactions of Cerium Oxide Nanoparticles and Soybean Seedlings (Glycine max (L.) Merr.) in a Greenhouse Study
    Stowers, Cheyenne
    King, Maria
    Rossi, Lorenzo
    Zhang, Weilan
    Arya, Aishwarya
    Ma, Xingmao
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2018, 6 (08): : 10307 - +
  • [43] EFFECT OF BIOCHAR APPLICATION ON SEED GERMINATION AND SEEDLING GROWTH OF GLYCINE MAX (L.) MERR. UNDER DROUGHT STRESS
    Hafeez, Yousara
    Iqbal, Sumera
    Jabeen, Khajista
    Shahzad, Sobia
    Jahan, Summera
    Rasul, Fahd
    PAKISTAN JOURNAL OF BOTANY, 2017, 49 : 7 - 13
  • [44] Early Identification of Herbicide Stress in Soybean (Glycine max (L.) Merr.) Using Chlorophyll Fluorescence Imaging Technology
    Li, Hui
    Wang, Pei
    Weber, Jonas Felix
    Gerhards, Roland
    SENSORS, 2018, 18 (01)
  • [45] The effect of exogenous glycine betaine on yield of soybean [Glycine max (L.) Merr.] in two contrasting cultivars Pershing and DPX under soil salinity stress
    Rezaei, Mohammad Ali
    Kaviani, Behzad
    Masouleh, Ardashir Kharabian
    PLANT OMICS, 2012, 5 (02) : 87 - 93
  • [46] Interplay between GST and nitric oxide in the early response of soybean (Glycine max L.) plants to salinity stress
    Dinler, Burcu Seckin
    Antoniou, Chrystalla
    Fotopoulos, Vasileios
    JOURNAL OF PLANT PHYSIOLOGY, 2014, 171 (18) : 1740 - 1747
  • [47] Impact of nanoparticle surface charge and phosphate on the uptake of coexisting cerium oxide nanoparticles and cadmium by soybean (Glycine max. (L.) merr.)
    Sharifan, Hamidreza
    Wang, Xiaoxuan
    Ma, Xingmao
    INTERNATIONAL JOURNAL OF PHYTOREMEDIATION, 2020, 22 (03) : 305 - 312
  • [48] The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture conditions
    Cao, Zhiming
    Rossi, Lorenzo
    Stowers, Cheyenne
    Zhang, Weilan
    Lombardini, Leonardo
    Ma, Xingmao
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (01) : 930 - 939
  • [49] The Effect of Neutral Salt and Alkaline Stress with the Same Na+ Concentration on Root Growth of Soybean (Glycine max (L.) Merr.) Seedlings
    Wang, Guangda
    Shen, Wanzheng
    Zhang, Zhaoning
    Guo, Shuang
    Hu, Jiachen
    Feng, Ruiqi
    Zhao, Qiang
    Du, Jidao
    Du, Yanli
    AGRONOMY-BASEL, 2022, 12 (11):
  • [50] The impact of cerium oxide nanoparticles on the physiology of soybean (Glycine max (L.) Merr.) under different soil moisture conditions
    Zhiming Cao
    Lorenzo Rossi
    Cheyenne Stowers
    Weilan Zhang
    Leonardo Lombardini
    Xingmao Ma
    Environmental Science and Pollution Research, 2018, 25 : 930 - 939