OL-SLAM: A Robust and Versatile System of Object Localization and SLAM

被引:7
|
作者
Chen, Chao [1 ]
Ma, Yukai [1 ]
Lv, Jiajun [1 ]
Zhao, Xiangrui [1 ]
Li, Laijian [1 ]
Liu, Yong [1 ]
Gao, Wang [2 ]
机构
[1] Zhejiang Univ, Inst Cyber Syst & Control, Hangzhou 310027, Peoples R China
[2] Sci & Technol Complex Syst Control & Intelligent A, Beijing 100191, Peoples R China
关键词
SLAM; multi-sensor fusion; object tracking and localization; VEHICLES;
D O I
10.3390/s23020801
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This paper proposes a real-time, versatile Simultaneous Localization and Mapping (SLAM) and object localization system, which fuses measurements from LiDAR, camera, Inertial Measurement Unit (IMU), and Global Positioning System (GPS). Our system can locate itself in an unknown environment and build a scene map based on which we can also track and obtain the global location of objects of interest. Precisely, our SLAM subsystem consists of the following four parts: LiDAR-inertial odometry, Visual-inertial odometry, GPS-inertial odometry, and global pose graph optimization. The target-tracking and positioning subsystem is developed based on YOLOv4. Benefiting from the use of GPS sensor in the SLAM system, we can obtain the global positioning information of the target; therefore, it can be highly useful in military operations, rescue and disaster relief, and other scenarios.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] UVS: underwater visual SLAM—a robust monocular visual SLAM system for lifelong underwater operations
    Marco Leonardi
    Annette Stahl
    Edmund Førland Brekke
    Martin Ludvigsen
    Autonomous Robots, 2023, 47 : 1367 - 1385
  • [32] EGO-SLAM: A Robust Monocular SLAM for Egocentric Videos
    Patra, Suvam
    Gupta, Kartikeya
    Ahmad, Faran
    Arora, Chetan
    Banerjee, Subhashis
    2019 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2019, : 31 - 40
  • [33] ONeK-SLAM: A Robust Object-level Dense SLAM Based on Joint Neural Radiance Fields and Keypoints
    Zhuge, Yue
    Luo, Haiyong
    Chen, Runze
    Chen, Yushi
    Yan, Jiaquan
    Jiang, Zhuqing
    2024 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2024), 2024, : 10245 - 10252
  • [34] Compositional and Scalable Object SLAM
    Sharma, Akash
    Dong, Wei
    Kaess, Michael
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 11626 - 11632
  • [35] PLMOT-SLAM: a point-line features fusion SLAM system with moving object tracking
    Wang, Kesai
    Yao, Xifan
    Ma, Nanfeng
    Ran, Guangjun
    VISUAL COMPUTER, 2024, : 4547 - 4565
  • [36] DSP-SLAM: Object Oriented SLAM with Deep Shape Priors
    Wang, Jingwen
    Runz, Martin
    Agapito, Lourdes
    2021 INTERNATIONAL CONFERENCE ON 3D VISION (3DV 2021), 2021, : 1362 - 1371
  • [37] EO-SLAM: Evolutionary Object Slam in Perceptual Constrained Scene
    Chen Jiahao
    Li Xiuzhi
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT III, 2022, 13606 : 426 - 438
  • [38] Detect-SLAM: Making Object Detection and SLAM Mutually Beneficial
    Zhong, Fangwei
    Wang, Sheng
    Zhang, Ziqi
    Zhou, Chen
    Wang, Yizhou
    2018 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2018), 2018, : 1001 - 1010
  • [39] OpenVSLAM: A Versatile Visual SLAM Framework
    Sumikura, Shinya
    Shibuya, Mikiya
    Sakurada, Ken
    PROCEEDINGS OF THE 27TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA (MM'19), 2019, : 2292 - 2295
  • [40] UVS: underwater visual SLAM-a robust monocular visual SLAM system for lifelong underwater operations
    Leonardi, Marco
    Stahl, Annette
    Brekke, Edmund Forland
    Ludvigsen, Martin
    AUTONOMOUS ROBOTS, 2023, 47 (08) : 1367 - 1385