Optimal control of a two-dimensional contact problem with multiple unilateral constraints

被引:0
作者
Ma, Cheng-Cheng [1 ]
Wang, Yang-Yang [2 ]
Sun, Bing [1 ,3 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing, Peoples R China
[2] China Jiliang Univ, Coll Sci, Hangzhou, Peoples R China
[3] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Optimal control; maximum principle; inequality constraint; contact problem; unilateral constraint; FRICTIONAL CONTACT; SIMULATIONS; BEAM;
D O I
10.1080/00036811.2023.2171872
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we are concerned with optimal control of a frictionless contact problem with multiple unilateral constraints for a two-dimensional bar. The existence of an optimal trajectory-control pair is firstly proven under the framework of general cost functional. The Pontryagin maximum principle is then established for the investigational system equipped with many equality and inequality constraints in fixed final horizon case, owing to the Dubovitskii and Milyutin functional analytical approach. A remark concludes the article with the discussion, which address the utilization of obtained necessary optimality condition.
引用
收藏
页码:5195 / 5214
页数:20
相关论文
共 31 条
  • [1] Ahn J, 2012, ELECTRON J DIFFER EQ
  • [2] Optimal control of an elastic contact problem involving Tresca friction law
    Amassad, A
    Chenais, D
    Fabre, C
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (08) : 1107 - 1135
  • [3] Analysis and simulations of a nonlinear elastic dynamic beam
    Andrews, K. T.
    Dumont, Y.
    M'Bengue, M. F.
    Purcell, J.
    Shillor, M.
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (06): : 1005 - 1019
  • [4] MODELING AND SIMULATIONS FOR QUASISTATIC FRICTIONAL CONTACT OF A LINEAR 2D BAR
    Barboteu, Mikael
    Djehaf, Nacera
    Shillor, Meir
    Sofonea, Mircea
    [J]. JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2017, 55 (03) : 897 - 910
  • [5] The control variational method for beams in contact with deformable obstacles
    Barboteu, Mikael
    Sofonea, Mircea
    Tiba, Dan
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2012, 92 (01): : 25 - 39
  • [6] Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
  • [7] Capatina A., 2014, Variational Inequalities and Frictional Contact Problems, V31
  • [8] OPTIMAL BIRTH-CONTROL OF POPULATION-DYNAMICS
    CHAN, WL
    GUO, BZ
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 144 (02) : 532 - 552
  • [9] Dubovitskii-Milyutin formalism applied to optimal control problems with constraints given by the heat equation with final data
    Gayte, Inmaculada
    Guillen-Gonzalez, Francisco
    Rojas-Medar, Marko
    [J]. IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2010, 27 (01) : 57 - 76
  • [10] PREDICTIVE MIN-H METHOD TO IMPROVE CONVERGENCE TO OPTIMAL SOLUTIONS
    GIBSON, JA
    LOWINGER, JF
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 1974, 19 (03) : 575 - 592