Reinforcement learning in medical image analysis: Concepts, applications, challenges, and future directions

被引:32
|
作者
Hu, Mingzhe [1 ,2 ]
Zhang, Jiahan [1 ]
Matkovic, Luke [1 ]
Liu, Tian [1 ]
Yang, Xiaofeng [1 ,2 ,3 ]
机构
[1] Emory Univ, Sch Med, Dept Radiat Oncol, Atlanta, GA USA
[2] Emory Univ, Dept Comp Sci & Informat, Atlanta, GA USA
[3] Emory Univ, Sch Med, Dept Radiat Oncol, 1365 Clifton Rd NE, Atlanta, GA 30322 USA
来源
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS | 2023年 / 24卷 / 02期
基金
美国国家卫生研究院;
关键词
reinforcement learning; AGENT;
D O I
10.1002/acm2.13898
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
MotivationMedical image analysis involves a series of tasks used to assist physicians in qualitative and quantitative analyses of lesions or anatomical structures which can significantly improve the accuracy and reliability of medical diagnoses and prognoses. Traditionally, these tedious tasks were finished by experienced physicians or medical physicists and were marred with two major problems, low efficiency and bias.In the past decade, many machine learning methods have been applied to accelerate and automate the image analysis process. Compared to the enormous deployments of supervised and unsupervised learning models, attempts to use reinforcement learning in medical image analysis are still scarce. We hope that this review article could serve as the stepping stone for related research in the future. SignificanceWe found that although reinforcement learning has gradually gained momentum in recent years, many researchers in the medical analysis field still find it hard to understand and deploy in clinical settings. One possible cause is a lack of well-organized review articles intended for readers without professional computer science backgrounds. Rather than to provide a comprehensive list of all reinforcement learning models applied in medical image analysis, the aim of this review is to help the readers formulate and solve their medical image analysis research through the lens of reinforcement learning. Approach & ResultsWe selected published articles from Google Scholar and PubMed. Considering the scarcity of related articles, we also included some outstanding newest preprints. The papers were carefully reviewed and categorized according to the type of image analysis task. In this article, we first reviewed the basic concepts and popular models of reinforcement learning. Then, we explored the applications of reinforcement learning models in medical image analysis. Finally, we concluded the article by discussing the reviewed reinforcement learning approaches' limitations and possible future improvements.
引用
收藏
页数:21
相关论文
共 39 条
  • [1] Reinforcement learning in sentiment analysis: a review and future directions
    Eyu, Jer Min
    Yau, Kok-Lim Alvin
    Liu, Lei
    Chong, Yung-Wey
    ARTIFICIAL INTELLIGENCE REVIEW, 2024, 58 (01)
  • [2] Deep multiagent reinforcement learning: challenges and directions
    Wong, Annie
    Back, Thomas
    Kononova, Anna, V
    Plaat, Aske
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (06) : 5023 - 5056
  • [3] Deep multiagent reinforcement learning: challenges and directions
    Annie Wong
    Thomas Bäck
    Anna V. Kononova
    Aske Plaat
    Artificial Intelligence Review, 2023, 56 : 5023 - 5056
  • [4] Current applications and potential future directions of reinforcement learning-based Digital Twins in agriculture
    Goldenits, Georg
    Mallinger, Kevin
    Raubitzek, Sebastian
    Neubauer, Thomas
    SMART AGRICULTURAL TECHNOLOGY, 2024, 8
  • [5] The Frontiers of Deep Reinforcement Learning for Resource Management in Future Wireless HetNets: Techniques, Challenges, and Research Directions
    Alwarafy, Abdulmalik
    Abdallah, Mohamed
    Ciftler, Bekir Sait
    Al-Fuqaha, Ala
    Hamdi, Mounir
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2022, 3 : 322 - 365
  • [6] Reinforcement Learning for Selective Key Applications in Power Systems: Recent Advances and Future Challenges
    Chen, Xin
    Qu, Guannan
    Tang, Yujie
    Low, Steven
    Li, Na
    IEEE TRANSACTIONS ON SMART GRID, 2022, 13 (04) : 2935 - 2958
  • [7] Domain Adaptation in Reinforcement Learning: Approaches, Limitations, and Future Directions
    Wang B.
    Journal of The Institution of Engineers (India): Series B, 2024, 105 (05) : 1223 - 1240
  • [8] Applications and Challenges of Reinforcement Learning in Autonomous Driving Technology
    He Y.
    Lin H.
    Liu Y.
    Yang L.
    Qu X.
    Tongji Daxue Xuebao/Journal of Tongji University, 2024, 52 (04): : 520 - 531
  • [9] Reinforcement Learning in Robotics: Applications and Real-World Challenges
    Kormushev, Petar
    Calinon, Sylvain
    Caldwell, Darwin G.
    ROBOTICS, 2013, 2 (03): : 122 - 148
  • [10] Multi-Agent Reinforcement Learning: A Review of Challenges and Applications
    Canese, Lorenzo
    Cardarilli, Gian Carlo
    Di Nunzio, Luca
    Fazzolari, Rocco
    Giardino, Daniele
    Re, Marco
    Spano, Sergio
    APPLIED SCIENCES-BASEL, 2021, 11 (11):