Optimization of deep learning models for the prediction of gene mutations using unsupervised clustering

被引:14
作者
Chen, Zihan [1 ]
Li, Xingyu [2 ]
Yang, Miaomiao [3 ]
Zhang, Hong [2 ]
Xu, Xu Steven [4 ]
机构
[1] Univ Sci & Technol China, Sch Data Sci, Hefei, Peoples R China
[2] Univ Sci & Technol China, Sch Management, Dept Stat & Finance, Hefei 230026, Anhui, Peoples R China
[3] Anhui Med Univ, Affiliated Hosp 4, Clin Pathol Ctr, Hefei, Peoples R China
[4] Genmab Inc, Clin Pharmacol & Quantitat Sci, Princeton, NJ 08540 USA
基金
中国国家自然科学基金;
关键词
deep learning; whole-slide images; H&E image; gene mutation; unsupervised clustering; COLORECTAL-CANCER; MOLECULAR SUBTYPES; SELECTION; KRAS;
D O I
10.1002/cjp2.302
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Deep learning models are increasingly being used to interpret whole-slide images (WSIs) in digital pathology and to predict genetic mutations. Currently, it is commonly assumed that tumor regions have most of the predictive power. However, it is reasonable to assume that other tissues from the tumor microenvironment may also provide important predictive information. In this paper, we propose an unsupervised clustering-based multiple-instance deep learning model for the prediction of genetic mutations using WSIs of three cancer types obtained from The Cancer Genome Atlas. Our proposed model facilitates the identification of spatial regions related to specific gene mutations and exclusion of patches that lack predictive information through the use of unsupervised clustering. This results in a more accurate prediction of gene mutations when compared with models using all image patches on WSIs and two recently published algorithms for all three different cancer types evaluated in this study. In addition, our study validates the hypothesis that the prediction of gene mutations solely based on tumor regions on WSI slides may not always provide the best performance. Other tissue types in the tumor microenvironment could provide a better prediction ability than tumor tissues alone. These results highlight the heterogeneity in the tumor microenvironment and the importance of identification of predictive image patches in digital pathology prediction tasks.
引用
收藏
页码:3 / 17
页数:15
相关论文
共 48 条
  • [1] Abbet Christian, 2020, Medical Image Computing and Computer Assisted Intervention - MICCAI 2020. 23rd International Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12265), P480, DOI 10.1007/978-3-030-59722-1_46
  • [2] The Molecular Taxonomy of Primary Prostate Cancer
    Abeshouse, Adam
    Ahn, Jaeil
    Akbani, Rehan
    Ally, Adrian
    Amin, Samirkumar
    Andry, Christopher D.
    Annala, Matti
    Aprikian, Armen
    Armenia, Joshua
    Arora, Arshi
    Auman, J. Todd
    Balasundaram, Miruna
    Balu, Saianand
    Barbieri, Christopher E.
    Bauer, Thomas
    Benz, Christopher C.
    Bergeron, Alain
    Beroukhim, Rameen
    Berrios, Mario
    Bivol, Adrian
    Bodenheimer, Tom
    Boice, Lori
    Bootwalla, Moiz S.
    dos Reis, Rodolfo Borges
    Boutros, Paul C.
    Bowen, Jay
    Bowlby, Reanne
    Boyd, Jeffrey
    Bradley, Robert K.
    Breggia, Anne
    Brimo, Fadi
    Bristow, Christopher A.
    Brooks, Denise
    Broom, Bradley M.
    Bryce, Alan H.
    Bubley, Glenn
    Burks, Eric
    Butterfield, Yaron S. N.
    Button, Michael
    Canes, David
    Carlotti, Carlos G.
    Carlsen, Rebecca
    Carmel, Michel
    Carroll, Peter R.
    Carter, Scott L.
    Cartun, Richard
    Carver, Brett S.
    Chan, June M.
    Chang, Matthew T.
    Chen, Yu
    [J]. CELL, 2015, 163 (04) : 1011 - 1025
  • [3] Genomic analyses identify molecular subtypes of pancreatic cancer
    Bailey, Peter
    Chang, David K.
    Nones, Katia
    Johns, Amber L.
    Patch, Ann-Marie
    Gingras, Marie-Claude
    Miller, David K.
    Christ, Angelika N.
    Bruxner, Tim J. C.
    Quinn, Michael C.
    Nourse, Craig
    Murtaugh, L. Charles
    Harliwong, Ivon
    Idrisoglu, Senel
    Manning, Suzanne
    Nourbakhsh, Ehsan
    Wani, Shivangi
    Fink, Lynn
    Holmes, Oliver
    Chin, Vencssa
    Anderson, Matthew J.
    Kazakoff, Stephen
    Leonard, Conrad
    Newell, Felicity
    Waddell, Nick
    Wood, Scott
    Xu, Qinying
    Wilson, Peter J.
    Cloonan, Nicole
    Kassahn, Karin S.
    Taylor, Darrin
    Quek, Kelly
    Robertson, Alan
    Pantano, Lorena
    Mincarelli, Laura
    Sanchez, Luis N.
    Evers, Lisa
    Wu, Jianmin
    Pinese, Mark
    Cowley, Mark J.
    Jones, Marc D.
    Colvin, Emily K.
    Nagrial, Adnan M.
    Humphrey, Emily S.
    Chantrill, Lorraine A.
    Mawson, Amanda
    Humphris, Jeremy
    Chou, Angela
    Pajic, Marina
    Scarlett, Christopher J.
    [J]. NATURE, 2016, 531 (7592) : 47 - +
  • [4] Specific codon 13 K-ras mutations are predictive of clinical outcome in colorectal cancer patients, whereas codon 12 K-ras mutations are associated with mucinous histotype
    Bazan, V
    Migliavacca, M
    Zanna, I
    Tubiolo, C
    Grassi, N
    Latteri, MA
    La Farina, M
    Albanese, I
    Dardanoni, G
    Salerno, S
    Tomasin, RM
    Labianca, R
    Gebbia, N
    Russo, A
    [J]. ANNALS OF ONCOLOGY, 2002, 13 (09) : 1438 - 1446
  • [5] Development and validation of a weakly supervised deep learning framework to predict the status of molecular pathways and key mutations in colorectal cancer from routine histology images: a retrospective study
    Bilal, Mohsin
    Raza, Shan E. Ahmed
    Azam, Ayesha
    Graham, Simon
    Ilyas, Mohammad
    Cree, Ian A.
    Snead, David
    Minhas, Fayyaz
    Rajpoot, Nasir M.
    [J]. LANCET DIGITAL HEALTH, 2021, 3 (12): : E763 - E772
  • [6] Oncology Drug Approvals: Evaluating Endpoints and Evidence in an Era of Breakthrough Therapies
    Blumenthal, Gideon M.
    Kluetz, Paul G.
    Schneider, Julie
    Goldberg, Kirsten B.
    McKee, Amy E.
    Pazdur, Richard
    [J]. ONCOLOGIST, 2017, 22 (07) : 762 - 767
  • [7] Mutant KRAS, chromosomal instability and prognosis in colorectal cancer
    Castagnola, P
    Giaretti, W
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2005, 1756 (02): : 115 - 125
  • [8] Classification and mutation prediction based on histopathology H&E images in liver cancer using deep learning
    Chen, Mingyu
    Zhang, Bin
    Topatana, Win
    Cao, Jiasheng
    Zhu, Hepan
    Juengpanich, Sarun
    Mao, Qijiang
    Yu, Hong
    Cai, Xiujun
    [J]. NPJ PRECISION ONCOLOGY, 2020, 4 (01)
  • [9] Identification of topological features in renal tumor microenvironment associated with patient survival
    Cheng, Jun
    Mo, Xiaokui
    Wang, Xusheng
    Parwani, Anil
    Feng, Qianjin
    Huang, Kun
    [J]. BIOINFORMATICS, 2018, 34 (06) : 1024 - 1030
  • [10] Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
    Coudray, Nicolas
    Ocampo, Paolo Santiago
    Sakellaropoulos, Theodore
    Narula, Navneet
    Snuderl, Matija
    Fenyo, David
    Moreira, Andre L.
    Razavian, Narges
    Tsirigos, Aristotelis
    [J]. NATURE MEDICINE, 2018, 24 (10) : 1559 - +