Lattice points in stretched finite type domains

被引:0
作者
Guo, Jingwei [1 ]
Jiang, Tao [2 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
[2] Anhui Normal Univ, Sch Math & Stat, Wuhu 241002, Peoples R China
关键词
Lattice points; Finite type domains; Optimal stretching; CONVEX HYPERSURFACES; RIESZ MEANS; EIGENVALUES; LAPLACIAN; CUBOIDS;
D O I
10.1016/j.jnt.2022.07.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study an optimal stretching problem, which is a variant lattice point problem, for convex domains in Rd (d >= 2) with smooth boundary of finite type that are symmetric with respect to each coordinate hyperplane/axis. We prove that optimal domains which contain the most positive (or least nonnegative) lattice points are asymptotically balanced. (c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 50 条
  • [31] Lattice Points Close to the Heisenberg Spheres
    Campolongo E.G.
    Taylor K.
    La Matematica, 2023, 2 (1): : 156 - 196
  • [32] A note on an inverse problem for lattice points
    Ljujic, Zeljka
    Sanabria, Camilo
    TOPOLOGY AND ITS APPLICATIONS, 2011, 158 (08) : 1012 - 1018
  • [33] AVERAGE NUMBER OF LATTICE POINTS IN A DISK
    Jayakar, Sujay
    Strichartz, Robert S.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (01) : 1 - 8
  • [34] Lattice points in bodies with algebraic boundary
    Müller, W
    ACTA ARITHMETICA, 2003, 108 (01) : 9 - 24
  • [35] On the Number of Lattice Points in the Shifted Circles
    Jabbarov, Ilgar Sh
    Aslanova, Natiga Sh
    Jeferli, Esmira, V
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2020, 10 (02): : 175 - 190
  • [36] On the number of lattice points in thin sectors
    Waxman, Ezra
    Yesha, Nadav
    MONATSHEFTE FUR MATHEMATIK, 2024, 204 (03): : 641 - 658
  • [37] Lattice points in bodies of rotation with a dent
    Nowak, Werner Georg
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2016, 12 (02) : 567 - 583
  • [38] Matching fields and lattice points of simplices
    Loho, Georg
    Smith, Ben
    ADVANCES IN MATHEMATICS, 2020, 370
  • [39] Observability on lattice points for heat equations and applications
    Wang, Ming
    Zhang, Can
    Zhang, Liang
    SYSTEMS & CONTROL LETTERS, 2019, 134
  • [40] On a question regarding visibility of lattice points - III
    Das Adhikari, S
    Chen, YG
    DISCRETE MATHEMATICS, 2002, 259 (1-3) : 251 - 256