HIGHLY DISPERSIVE OPTICAL SOLITONS WITH QUADRATIC-CUBIC NONLINEAR REFRACTIVE INDEX BY LIE SYMMETRY

被引:1
作者
Wang, Gangwei [1 ]
He, Mengyue [1 ]
Zhou, Qin [2 ]
Yildirim, Yakup [3 ,4 ]
Biswas, Anjan [5 ,6 ,7 ,8 ]
Alshehri, Hashim [6 ,7 ]
机构
[1] Hebei Univ Econ & Business, Sch Math & Stat, Shijiazhuang 050061, Peoples R China
[2] Wuhan Text Univ, Sch Math & Phys Sci, Wuhan 430073, Peoples R China
[3] Biruni Univ, Dept Comp Engn, TR-34010 Istanbul, Turkiye
[4] Near East Univ, Dept Math, Nicosia 99138, Cyprus
[5] Grambling State Univ, Dept Math & Phys, Grambling, LA 71245 USA
[6] King Abdulaziz Univ, Ctr Modern Math Sci & their Applicat CMMSA, Dept Math, Math Modeling & Appl Computat MMAC Res Grp, Jeddah 21589, Saudi Arabia
[7] Dunarea de Jos Univ Galati, Cross Border Fac Humanities Econ & Engn, Dept Appl Sci, 111 Domneasca St, Galati 800201, Romania
[8] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Medunsa, South Africa
来源
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION | 2024年 / 14卷 / 02期
关键词
Solitons; Lie symmetry; highly dispersive; QUINTIC-SEPTIC LAW; NONLOCAL NONLINEARITY;
D O I
10.11948/20220417
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses highly dispersive optical solitons with quadratic-cubic nonlinear form of self-phase modulation. Lie symmetry analysis reduced the governing model to an ordinary differential equation which was further analyzed using two approaches. The series expansion approach and the F-expansion scheme yielded soliton solutions as well as an abundance of additional solutions to the model. The parameter restrictions were also enumerated to provide a formidable structure to the solutions.
引用
收藏
页码:682 / 702
页数:21
相关论文
共 23 条
[1]   Conservation laws for highly dispersive optical solitons [J].
Biswas, Anjan ;
Kara, Abdul H. ;
Alshomrani, Ali Saleh ;
Ekici, Mehmet ;
Zhou, Qin ;
Belic, Milivoj R. .
OPTIK, 2019, 199
[2]   Highly dispersive optical solitons with cubic-quintic-septic law by It Check for exp-expansion [J].
Biswas, Anjan ;
Ekici, Mehmet ;
Sonmezoglu, Abdullah ;
Belic, Milivoj R. .
OPTIK, 2019, 186 :321-325
[3]   Highly dispersive optical solitons with non-local nonlinearity by extended Jacobi's elliptic function expansion [J].
Biswas, Anjan ;
Ekici, Mehmet ;
Sonmezoglu, Abdullah ;
Belic, Milivoj R. .
OPTIK, 2019, 184 :277-286
[4]   Highly dispersive optical solitons with cubic-quintic-septic law by extended Jacobi's elliptic function expansion [J].
Biswas, Anjan ;
Ekici, Mehmet ;
Sonmezoglu, Abdullah ;
Belic, Milivoj R. .
OPTIK, 2019, 183 :571-578
[5]   Highly dispersive optical solitons with non-local nonlinearity by F-expansion [J].
Biswas, Anjan ;
Ekici, Mehmet ;
Sonmezoglu, Abdullah ;
Belic, Milivoj R. .
OPTIK, 2019, 183 :1140-1150
[6]   Highly dispersive optical solitons with Kerr law nonlinearity by F-expansion [J].
Biswas, Anjan ;
Ekicid, Mehmet ;
Sonmezoglu, Abdullah ;
Belic, Milivoj R. .
OPTIK, 2019, 181 :1028-1038
[7]  
Bluman GW, 2010, Applications of Symmetry Methods to Partial Differential Equations, V168
[8]   Lie symmetry analysis for cubic-quartic nonlinear Schrodinger's equation [J].
Bonsal, Anupma ;
Biswas, Anjan ;
Zhou, Qin ;
Babatin, M. M. .
OPTIK, 2018, 169 :12-15
[9]   Dynamic behaviors of the lump solutions and mixed solutions to a (2+1)-dimensional nonlinear model [J].
Chen, Si-Jia ;
Lu, Xing ;
Yin, Yu-Hang .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2023, 75 (05)
[10]   Backlund transformation, Wronskian solutions and interaction solutions to the (3+1)-dimensional generalized breaking soliton equation [J].
Chen, Yu ;
Lu, Xing ;
Wang, Xiao-Li .
EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (06)