Neuroprotective Effects of Aucubin against Cerebral Ischemia and Ischemia Injury through the Inhibition of the TLR4/NF-κB Inflammatory Signaling Pathway in Gerbils

被引:4
|
作者
Park, Joon Ha [1 ]
Lee, Tae-Kyeong [2 ]
Kim, Dae Won [3 ]
Ahn, Ji Hyeon [4 ]
Shin, Myoung Cheol [5 ]
Cho, Jun Hwi [5 ]
Won, Moo-Ho [5 ]
Kang, Il Jun [2 ]
机构
[1] Dongguk Univ, Coll Korean Med, Dept Anat, Gyeongju 38066, South Korea
[2] Hallym Univ, Dept Food Sci & Nutr, Chunchon 24252, South Korea
[3] Gangneung Wonju Natl Univ, Res Inst Oral Sci, Coll Dent, Dept Biochem & Mol Biol, Chunchon 25457, South Korea
[4] Youngsan Univ, Coll Hlth Sci, Dept Phys Therapy, Yangsan 50510, South Korea
[5] Kangwon Natl Univ, Kangwon Natl Univ Hosp, Sch Med, Dept Emergency Med, Chunchon 24289, South Korea
基金
新加坡国家研究基金会;
关键词
gliosis; hippocampus; iridoid glycoside; ischemia and reperfusion; neuroinflammation; proinflammatory cytokines; TOLL-LIKE RECEPTOR-4; ISCHEMIA/REPERFUSION INJURY; CONFERS NEUROPROTECTION; IRIDOID GLYCOSIDES; HIPPOCAMPUS; ACTIVATION; CELLS; TLR4; RATS;
D O I
10.3390/ijms25063461
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aucubin, an iridoid glycoside, possesses beneficial bioactivities in many diseases, but little is known about its neuroprotective effects and mechanisms in brain ischemia and reperfusion (IR) injury. This study evaluated whether aucubin exhibited neuroprotective effects against IR injury in the hippocampal CA1 region through anti-inflammatory activity in gerbils. Aucubin (10 mg/kg) was administered intraperitoneally once a day for one week prior to IR. Neuroprotective effects of aucubin were assessed by neuronal nuclei (NeuN) immunofluorescence and Floro-Jade C (FJC) histofluorescence. Microgliosis and astrogliosis were evaluated using immunohistochemistry with anti-ionized calcium binding adapter protein 1 (Iba1) and glial fibrillary acidic protein (GFAP). Protein levels of proinflammatory cytokines interleukin1 beta (IL1 beta) and tumor necrosis factor alpha (TNF alpha) were assayed using enzyme-linked immunosorbent assay and Western blot. Changes in toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-kappa B) signaling pathway were assessed by measuring levels of TLR4, inhibitor of NF-kappa B alpha (I kappa B alpha), and NF-kappa B p65 using Western blot. Aucubin treatment protected pyramidal neurons from IR injury. IR-induced microgliosis and astrogliosis were suppressed by aucubin treatment. IR-induced increases in IL1 beta and TNF alpha levels were significantly alleviated by the treatment. IR-induced upregulation of TLR4 and downregulation of I kappa B alpha were significantly prevented by aucubin treatment, and IR-induced nuclear translocation of NF-kappa B was reversed by aucubin treatment. Briefly, aucubin exhibited neuroprotective effects against brain IR injury, which might be related to the attenuation of neuroinflammation through inhibiting the TLR-4/NF-kappa B signaling pathway. These results suggest that aucubin pretreatment may be a potential approach for the protection of brain IR injury.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Ephedrine attenuates cerebral ischemia/reperfusion injury in rats through NF-κB signaling pathway
    Shi, Chanhong
    Li, Jianhong
    Li, Jianwei
    HUMAN & EXPERIMENTAL TOXICOLOGY, 2021, 40 (06) : 994 - 1002
  • [32] Melatonin Enhances the Therapeutic Effect of Plasma Exosomes Against Cerebral Ischemia-Induced Pyroptosis Through the TLR4/NF-κB Pathway
    Wang, Kankai
    Ru, Junnan
    Zhang, Hengli
    Chen, Jiayu
    Lin, Xiao
    Lin, Zhongxiao
    Wen, Min
    Huang, Lijie
    Ni, Haoqi
    Zhuge, Qichuan
    Yang, Su
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [33] Fingolimod Alleviates Inflammation after Cerebral Ischemia via HMGB1/TLR4/NF-κB Signaling Pathway
    Xing, Yao
    Zhong, Liyuan
    Guo, Jun
    Bao, Cuifen
    Luo, Yumin
    Min, Lianqiu
    JOURNAL OF INTEGRATIVE NEUROSCIENCE, 2024, 23 (08)
  • [34] Pretreatment with geniposide mitigates myocardial ischemia/reperfusion injury by modulating inflammatory response through TLR4/NF-?13 pathway
    Yao, Yanmei
    Lin, Leqing
    Tang, Wenxue
    Shen, Yueliang
    Chen, Fayu
    Li, Ning
    Wang, Baiyong
    EUROPEAN JOURNAL OF HISTOCHEMISTRY, 2023, 67 (03):
  • [35] Protective effects of 4-methylumbelliferone on myocardial ischemia/reperfusion injury in rats through inhibition of oxidative stress and downregulation of TLR4/NF-κB/NLRP3 signaling pathway
    Moradi, Alireza
    Aslani, Mohammad Reza
    Jahangiri, Hamzeh Mirshekari
    Naderi, Nasim
    Aboutaleb, Nahid
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2024, 397 (07) : 5015 - 5027
  • [36] The Potential of JWH-133 to Inhibit the TLR4/NF-κB Signaling Pathway in Uterine Ischemia-Reperfusion Injury
    Inandiklioglu, Nihal
    Onat, Taylan
    Raheem, Kayode Yomi
    Kaya, Savas
    LIFE-BASEL, 2024, 14 (10):
  • [37] Mycophenolate mofetil attenuates myocardial ischemia-reperfusion injury via regulation of the TLR4/NF-κB signaling pathway
    Li, Tiecheng
    Yu, Jingui
    Chen, Rongying
    Wu, Jianbo
    Fei, Jianchun
    Bo, Qiyu
    Xue, Ling
    Li, Desheng
    PHARMAZIE, 2014, 69 (11): : 850 - 855
  • [38] Suppression of TLR4/NF-κB Signaling Pathway Improves Cerebral Ischemia-Reperfusion Injury in Rats (vol 55, pg 4311, 2018)
    Zhao, Hang
    Chen, Zhuo
    Xie, Li-Juan
    Liu, Gui-Feng
    MOLECULAR NEUROBIOLOGY, 2021, 58 (01) : 451 - 451
  • [39] Effects of breviscapine on cerebral ischemia-reperfusion injury and intestinal flora imbalance by regulating the TLR4/MyD88/NF-κB signaling pathway in rats
    Chen, Hai-Dong
    Jiang, Ming-Zhao
    Zhao, Ying-Ying
    Li, Xin
    Lan, Hai
    Yang, Wan-Qi
    Lai, Yong
    JOURNAL OF ETHNOPHARMACOLOGY, 2023, 300
  • [40] Improvement in cerebral ischemia-reperfusion injury through the TLR4/NFκB pathway after Kudiezi injection in rats
    Liu, Xuemei
    Zhang, Xinyang
    Wang, Fengli
    Liang, Xiao
    Zeng, Zixiu
    Zhao, Jiayi
    Zheng, Hong
    Jiang, Xiangning
    Zhang, Yunling
    LIFE SCIENCES, 2017, 191 : 132 - 140