Gradient microporous layer with controllable aperture for high-performance proton-exchange membrane fuel cells

被引:7
|
作者
Guo, Jie [1 ]
Wang, Wei [1 ]
Shi, Ruhua [1 ]
Gu, Tainyi [1 ]
Wei, Xian [1 ]
Zhao, Jiaqing [1 ]
Chao, Ming [1 ]
Zhang, Qian [1 ]
Yang, Ruizhi [1 ]
机构
[1] Soochow Univ, Soochow Inst Energy & Mat Innovat, Coll Energy, Key Lab Adv Carbon Mat & Wearable Energy Technol J, Suzhou 215006, Peoples R China
基金
国家重点研发计划;
关键词
GAS-DIFFUSION LAYER; MICRO-POROUS LAYER; LIQUID WATER; CARBON; TRANSPORT; SILANE; SITU;
D O I
10.1007/s10853-024-09467-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A microporous layer (MPL) with appropriate aperture and hydrophobicity is key for proton-exchange membrane fuel cells (PEMFCs). The MPLs are typically prepared from mixing carbon black and a hydrophobic agent (i.e., polytetrafluoroethylene) physically followed by annealing at elevated temperatures, resulting in pore blockage and carbon black aggregation. To address this issue, we report a facile method to fabricate uniform porous carbons (UPCs) with single aperture and hierarchical porous carbon (HPC) with multiple apertures using a hard silica template followed by chemical grafting with hydrophobic fluoroalkylsilane (FAS-17). An advanced MPL (GMPL) is fabricated by direct layer-by-layer construction of hydrophobic UPC with different apertures, demonstrating improved water drainage and efficient gas transportation, thereby delivering high output power density of 809.64 mW center dot cm-2. The as-fabricated GMPL demonstrates superior performance as compared to the one containing MPL prepared with HPC (HPC-MPL, 781.20 mW center dot cm-2) and the ones employing MPL with a single aperture (714.38-749.89 mW center dot cm-2). The controllable gradient aperture, superhydrophobicity, and open pore/channels contribute to the high performance of PFMFC. This work presents a feasible structural design for MPLs toward high-performance PEMFC.
引用
收藏
页码:3561 / 3572
页数:12
相关论文
共 50 条
  • [41] Optimization of cathode microporous layer materials for proton exchange membrane fuel cell
    Li, Bing
    Xie, Meng
    Ji, Hao
    Chu, Tiankuo
    Yang, Daijun
    Ming, Pingwen
    Zhang, Cunman
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (27) : 14674 - 14686
  • [42] Improving proton exchange membrane fuel cell performance with carbon nanotubes as the material of cathode microporous layer
    Fan, Che-Chia
    Chang, Min-Hsing
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2016, 40 (02) : 181 - 188
  • [43] A review of the microporous layer in proton exchange membrane fuel cells: Materials and structural designs based on water transport mechanism
    Zhang, Jingjing
    Wang, Biao
    Jin, Junhong
    Yang, Shenglin
    Li, Guang
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 156
  • [44] Effect of microporous layer structural parameters on heat and mass transfer in proton exchange membrane fuel cells
    Zhang, Zhenya
    Mao, Jia
    Wei, Houyu
    Cheng, Chuanxiao
    Liu, Zhengxuan
    APPLIED THERMAL ENGINEERING, 2024, 239
  • [45] Engineering highly efficient root-inspired microporous layer for high-performance fuel cells
    Wen, Qinglin
    He, Can
    Ning, Fandi
    Shen, Min
    Liu, Yiyang
    Chai, Zhi
    Cheng, Xi
    Dan, Xiong
    Zou, Siyi
    Li, Wei
    He, Lei
    Tian, Bin
    Zhou, Xiaochun
    CHEMICAL ENGINEERING JOURNAL, 2024, 497
  • [46] Effects of microporous layer penetration ratio and substrate carbonization temperature on the performance of proton exchange membrane fuel cells
    Jaebong Sim
    Minsoo Kang
    Kyoungdoug Min
    Eunsook Lee
    Jy-Young Jyoung
    Journal of Mechanical Science and Technology, 2022, 36 : 4825 - 4838
  • [47] Effects of pore size gradient in the substrate of a gas diffusion layer on the performance of a proton exchange membrane fuel cell
    Oh, Hwanyeong
    Park, Jaeman
    Min, Kyoungdoug
    Lee, Eunsook
    Jyoung, Jy-Young
    APPLIED ENERGY, 2015, 149 : 186 - 193
  • [48] An electrospun hygroscopic and electron-conductive core-shell silica@carbon nanofiber for microporous layer in proton-exchange membrane fuel cell
    Lee, Hung-Fan
    Wang, Pei-Chin
    Chen-Yang, Yui Whei
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2019, 23 (03) : 971 - 984
  • [49] Precisely Engineered Microporous Layers for Proton Exchange Membrane Fuel Cells with High Power Density
    Wu, Ningran
    Hou, Dandan
    Zhang, Qian
    Liu, Ye
    Yao, Ayan
    Yang, Jing
    Zhang, Shengping
    Song, Ruiyang
    Zhang, Dongxu
    Qi, Yue
    Yang, Ruizhi
    Wang, Luda
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (17) : 6545 - 6555
  • [50] Designing the next generation of proton-exchange membrane fuel cells
    Jiao, Kui
    Xuan, Jin
    Du, Qing
    Bao, Zhiming
    Xie, Biao
    Wang, Bowen
    Zhao, Yan
    Fan, Linhao
    Wang, Huizhi
    Hou, Zhongjun
    Huo, Sen
    Brandon, Nigel P.
    Yin, Yan
    Guiver, Michael D.
    NATURE, 2021, 595 (7867) : 361 - 369