Polymeric Electronic Shielding Layer Enabling Superior Dendrite Suppression for All-Solid-State Lithium Batteries

被引:5
作者
Wei, Yiqi [1 ,2 ,3 ]
Li, Zhenglong [1 ]
Chen, Zichong [2 ,3 ]
Gao, Panyu [4 ]
Ma, Qihang [2 ,3 ]
Gao, Mingxi [2 ,3 ]
Yan, Chenhui [2 ,3 ]
Chen, Jian [1 ]
Wu, Zhijun [1 ]
Jiang, Yinzhu [2 ,3 ]
Yu, Xuebin [4 ]
Zhang, Xin [2 ,3 ]
Liu, Yongfeng [2 ,3 ]
Yang, Yaxiong [1 ]
Gao, Mingxia [2 ,3 ]
Sun, Wenping [2 ,3 ]
Pan, Hongge [1 ,2 ,3 ]
机构
[1] Xian Technol Univ, Inst Sci & Technol New Energy, Xian 710021, Peoples R China
[2] Zhejiang Univ, State Key Lab Silicon & Adv Semicond Mat, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Sch Mat Sci & Engn, Hangzhou 310027, Peoples R China
[4] Fudan Univ, Dept Mat Sci, Shanghai 200433, Peoples R China
基金
中国国家自然科学基金;
关键词
all-solid-state batteries; solid-state hydride electrolytes; poly(methyl methacrylate); electronic blocking; dendrite suppression; ION CONDUCTIVITY; ELECTROLYTES; LI; STABILITY; DESIGN; LIBH4;
D O I
10.1021/acsnano.4c00279
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
LiBH4 is one of the most promising candidates for use in all-solid-state lithium batteries. However, the main challenges of LiBH4 are the poor Li-ion conductivity at room temperature, excessive dendrite formation, and the narrow voltage window, which hamper practical application. Herein, we fabricate a flexible polymeric electronic shielding layer on the particle surfaces of LiBH4. The electronic conductivity of the primary LiBH4 is reduced by 2 orders of magnitude, to 1.15 x 10(-9) S cm(-1) at 25 degree celsius, due to the high electron affinity of the electronic shielding layer; this localizes the electrons around the BH4- anions, which eliminates electronic leakage from the anionic framework and leads to a 68-fold higher critical electrical bias for dendrite growth on the particle surfaces. Contrary to the previously reported work, the shielding layer also ensures fast Li-ion conduction due to the fast-rotational dynamics of the BH4- species and the high Li-ion (carrier) concentration on the particle surfaces. In addition, the flexibility of the layer guarantees its structural integrity during Li plating and stripping. Therefore, our LiBH4-based solid-state electrolyte exhibits a high critical current density (11.43 mA cm(-2)) and long cycling stability of 5000 h (5.70 mA cm(-2)) at 25 degree celsius. More importantly, the electrolyte had a wide operational temperature window (-30-150 degree celsius). We believe that our findings provide a perspective with which to avoid dendrite formation in hydride solid-state electrolytes and provide high-performance all-solid-state lithium batteries.
引用
收藏
页码:5965 / 5980
页数:16
相关论文
共 66 条
  • [1] Are Polymer-Based Electrolytes Ready for High-Voltage Lithium Battery Applications? An Overview of Degradation Mechanisms and Battery Performance
    Cabanero Martinez, Maria Angeles
    Boaretto, Nicola
    Naylor, Andrew J.
    Alcaide, Francisco
    Salian, Girish D.
    Palombardini, Flavia
    Ayerbe, Elixabete
    Borras, Mateu
    Casas-Cabanas, Montserrat
    [J]. ADVANCED ENERGY MATERIALS, 2022, 12 (32)
  • [2] Bridging Interparticle Li+ Conduction in a Soft Ceramic Oxide Electrolyte
    Chen, Wan-Ping
    Duan, Hui
    Shi, Ji-Lei
    Qian, Yumin
    Wan, Jing
    Zhang, Xu-Dong
    Sheng, Hang
    Guan, Bo
    Wen, Rui
    Yin, Ya-Xia
    Xin, Sen
    Guo, Yu-Guo
    Wan, Li-Jun
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (15) : 5717 - 5726
  • [3] Enhanced Li Ion Conductivity in LiBH4-Al2O3 Mixture via Interface Engineering
    Choi, Yong Seok
    Lee, Young-Su
    Choi, Dong-Jun
    Chae, Keun Hwa
    Oh, Kyu Hwan
    Cho, Young Whan
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2017, 121 (47) : 26209 - 26215
  • [4] Borohydride-Scaffolded Li/Na/Mg Fast Ionic Conductors for Promising Solid-State Electrolytes
    Cuan, Jing
    Zhou, You
    Zhou, Tengfei
    Ling, Shigang
    Rui, Kun
    Guo, Zaiping
    Liu, Huakun
    Yu, Xuebin
    [J]. ADVANCED MATERIALS, 2019, 31 (01)
  • [5] Polymer electrolytes and interfaces in solid-state lithium metal batteries
    Ding, Peipei
    Lin, Zhiyuan
    Guo, Xianwei
    Wu, Lingqiao
    Wang, Yongtao
    Guo, Hongxia
    Li, Liangliang
    Yu, Haijun
    [J]. MATERIALS TODAY, 2021, 51 : 449 - 474
  • [6] Pseudo-ternary LiBH4•LiCl•P2S5 system as structurally disordered bulk electrolyte for all-solid-state lithium batteries
    El Kharbachi, Abdelouahab
    Wind, Julia
    Ruud, Amund
    Hogset, Astrid B.
    Nygard, Magnus M.
    Zhang, Junxian
    Sorby, Magnus H.
    Kim, Sangryun
    Cuevas, Fermin
    Orimo, Shin-ichi
    Fichtner, Maximilian
    Latroche, Michel
    Fjellvag, Helmer
    Hauback, Bjorn C.
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (25) : 13872 - 13879
  • [7] Peeking across Grain Boundaries in a Solid-State Ionic Conductor
    Ganapathy, Swapna
    Yu, Chuang
    van Eck, Ernst R. H.
    Wagemaker, Marnix
    [J]. ACS ENERGY LETTERS, 2019, 4 (05) : 1092 - 1097
  • [8] Destabilization of LiBH4 by nanoconfinement in PMMA-co-BM polymer matrix for reversible hydrogen storage
    Gosalawit-Utke, Rapee
    Meethom, Sukanya
    Pistidda, Claudio
    Milanese, Chiara
    Laipple, Daniel
    Saisopa, Thanit
    Marini, Amedeo
    Klassen, Thomas
    Dornheim, Martin
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2014, 39 (10) : 5019 - 5029
  • [9] Methylamine Lithium Borohydride as Electrolyte for All-Solid-State Batteries
    Grinderslev, Jakob B.
    Skov, Lasse N.
    Andreasen, Jacob G.
    Ghorwal, Shaiq
    Skibsted, Jorgen
    Jensen, Torben R.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (32)
  • [10] Insights into the Anode-Initiated and Grain Boundary-Initiated Mechanisms for Dendrite Formation in All-Solid-State Lithium Metal Batteries
    Gu, Zhengcheng
    Song, Dongxing
    Luo, Shuting
    Liu, Hexin
    Sun, Ximei
    Zhu, Lingyun
    Ma, Weigang
    Zhang, Xing
    [J]. ADVANCED ENERGY MATERIALS, 2023, 13 (45)