Logistic regression versus XGBoost for detecting burned areas using satellite images

被引:4
作者
Militino, A. F. [1 ,2 ]
Goyena, H. [1 ,2 ]
Perez-Goya, U. [1 ,2 ]
Ugarte, M. D. [1 ,2 ]
机构
[1] Publ Univ Navarre UPNA, Dept Stat Comp Sci & Math, Arrosadia Campus, Pamplona 31006, Spain
[2] Univ Publ Navarra, Inst Adv Mat & Math InaMat2, Campus Arrosadia, Pamplona 31006, Navarre, Spain
关键词
Commission error; LR; Machine learning; MODIS; Omission error; Spectral indices; VIIRS; XGBoost; RANDOM FOREST; ALGORITHM; FIRES; CLASSIFICATION; SEVERITY; ACCURACY; INDEXES; RED;
D O I
10.1007/s10651-023-00590-7
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Classical statistical methods prove advantageous for small datasets, whereas machine learning algorithms can excel with larger datasets. Our paper challenges this conventional wisdom by addressing a highly significant problem: the identification of burned areas through satellite imagery, that is a clear example of imbalanced data. The methods are illustrated in the North-Central Portugal and the North-West of Spain in October 2017 within a multi-temporal setting of satellite imagery. Daily satellite images are taken from Moderate Resolution Imaging Spectroradiometer (MODIS) products. Our analysis shows that a classical Logistic regression (LR) model competes on par, if not surpasses, a widely employed machine learning algorithm called the extreme gradient boosting algorithm (XGBoost) within this particular domain.
引用
收藏
页码:57 / 77
页数:21
相关论文
共 50 条
  • [31] Land cover mapping of large areas using chain classification of neighboring Landsat satellite images
    Knorn, Jan
    Rabe, Andreas
    Radeloff, Volker C.
    Kuemmerle, Tobias
    Kozak, Jacek
    Hostert, Patrick
    REMOTE SENSING OF ENVIRONMENT, 2009, 113 (05) : 957 - 964
  • [32] Leukemia Prediction from Microscopic Images of Human Blood Cell Using HOG Feature Descriptor and Logistic Regression
    Abedy, Hossain
    Ahmed, Faysal
    Bhuiyan, Md. Nuruddin Qaisar
    Islam, Maheen
    Ali, Md. Nawab Yousuf
    Shamsujjoha, Md.
    2018 16TH INTERNATIONAL CONFERENCE ON ICT AND KNOWLEDGE ENGINEERING (ICT&KE), 2018, : 7 - 12
  • [33] A rule-based semi-automatic method to map burned areas in Mediterranean using Landsat images - revisited and improved
    Koutsias, Nikos
    Pleniou, Magdalini
    INTERNATIONAL JOURNAL OF DIGITAL EARTH, 2021, 14 (11) : 1602 - 1623
  • [34] Parametric classification with soft labels using the evidential EM algorithm: linear discriminant analysis versus logistic regression
    Quost, Benjamin
    Denoeux, Thierry
    Li, Shoumei
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2017, 11 (04) : 659 - 690
  • [35] Parametric classification with soft labels using the evidential EM algorithm: linear discriminant analysis versus logistic regression
    Benjamin Quost
    Thierry Denœux
    Shoumei Li
    Advances in Data Analysis and Classification, 2017, 11 : 659 - 690
  • [36] Dust detection and AOT estimation using combined VIR and TIR satellite images in urban areas of Iran
    Sehatkashani, S.
    Vazifedoust, M.
    Kamali, Gh.
    Bidokhti, A. A.
    SCIENTIA IRANICA, 2016, 23 (05) : 1984 - 1993
  • [37] Context-sensitive extraction of tree crown objects in urban areas using VHR satellite images
    Ardila, Juan P.
    Bijker, Wietske
    Tolpekin, Valentyn A.
    Stein, Alfred
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2012, 15 : 57 - 69
  • [38] DETECTING CLOUD PRESENCE IN SATELLITE IMAGES USING THE RGB-BASED CLIP VISION-LANGUAGE MODEL
    Czerkawski, Mikolaj
    Atkinson, Robert
    Tachtatzis, Christos
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5170 - 5173
  • [39] Estimating Burned Area in Mato Grosso, Brazil, Using an Object-Based Classification Method on a Systematic Sample of Medium Resolution Satellite Images
    Shimabukuro, Yosio Edemir
    Miettinen, Jukka
    Beuchle, Rene
    Grecchi, Rosana Cristina
    Simonetti, Dario
    Achard, Frederic
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (09) : 4502 - 4508
  • [40] A Novel Hybrid Learning System Using Modified Breaking Ties Algorithm and Multinomial Logistic Regression for Classification and Segmentation of Hyperspectral Images
    Shah, Syed Taimoor Hussain
    Qureshi, Shahzad Ahmad
    ul Rehman, Aziz
    Shah, Syed Adil Hussain
    Amjad, Arslan
    Mir, Adil Aslam
    Alqahtani, Amal
    Bradley, David A.
    Khandaker, Mayeen Uddin
    Faruque, Mohammad Rashed Iqbal
    Rafique, Muhammad
    APPLIED SCIENCES-BASEL, 2021, 11 (16):