Sorption-enhanced glycerol steam reforming over lithium cuprate-based bifunctional material for the production of high-purity hydrogen

被引:4
|
作者
Babu, Prabijna S. S. [1 ,2 ]
Vaidya, Prakash D. [1 ]
机构
[1] Inst Chem Technol, Dept Chem Engn, Mumbai 400019, India
[2] Ramniranjan Jhunjhunwala Coll, Dept Chem, Mumbai 400086, India
来源
MOLECULAR CATALYSIS | 2024年 / 553卷
关键词
Lithium cuprate; Hydrogen production; Sorption; -enhanced; Glycerol steam reforming; Carbon dioxide adsorption; NI-CU-AL; CO2; SORBENTS; CATALYST; CONVERSION; KINETICS; CAPTURE; LI2CUO2;
D O I
10.1016/j.mcat.2023.113718
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigated the production of high-purity H2 through sorption-enhanced glycerol steam reforming (SEGSR) using lab-made bifunctional materials consisting of nickel, Al2O3, and Li2CuO2. Different bifunctional materials were prepared with 10 wt % Ni loading but varying wt % of Al2O3 and Li2CuO2, and their catalytic activity was evaluated in a continuous fixed-bed down-flow reactor. HM-50, which had an equal wt % of Al2O3 and Li2CuO2, showed the highest performance. The conversion of glycerol and the purity of H2 were examined with respect to temperature, feed flow rate, and steam-to-carbon molar ratio (S/C). At the optimum reaction conditions (temperature = 700 degrees C, feed flow rate = 0.5 ml/min, and S/C = 6), glycerol conversion and H2 purity were 100 % and 94 mol %, respectively. The adsorption capacity of HM-50 was found to be 3.9 mmol CO2 per gram. With a breakthrough time of 15 min, the substance was stable for 13 adsorption-desorption cycles. The material was regenerated by substituting the feed with a N2 and steam mixture heated to 700 degrees C for 30 min. A most likely reaction mechanism suggested that glycerol was catalytically converted to acetaldehyde, which was then quickly decomposed to CO and CH4. We are the first research team to investigate the use of Li2CuO2 in any steam reforming process.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Continuous sorption-enhanced steam reforming of glycerol to high-purity hydrogen production
    Dou, Binlin
    Wang, Chao
    Chen, Haisheng
    Song, Yongchen
    Xie, Baozheng
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (27) : 11902 - 11909
  • [2] Production of high-purity hydrogen by sorption-enhanced steam reforming process of methanol
    Xiang Wu
    Sufang Wu
    Journal of Energy Chemistry, 2015, (03) : 315 - 321
  • [3] Production of high-purity hydrogen by sorption-enhanced steam reforming process of methanol
    Xiang Wu
    Sufang Wu
    Journal of Energy Chemistry, 2015, 24 (03) : 315 - 321
  • [4] Production of high-purity hydrogen by sorption-enhanced steam reforming process of methanol
    Wu, Xiang
    Wu, Sufang
    JOURNAL OF ENERGY CHEMISTRY, 2015, 24 (03) : 315 - 321
  • [5] Hydrogen production by sorption-enhanced steam reforming of glycerol
    Dou, Binlin
    Dupont, Valerie
    Rickett, Gavin
    Blakeman, Neil
    Williams, Paul T.
    Chen, Haisheng
    Ding, Yulong
    Ghadiri, Mojtaba
    BIORESOURCE TECHNOLOGY, 2009, 100 (14) : 3540 - 3547
  • [6] Efficacy of Lithium Zirconate-Based Bifunctional Materials to Produce High-Purity Hydrogen via Sorption-Enhanced Ethylene Glycol Steam Reforming
    Babu, Prabijna S. S.
    Vaidya, Prakash D.
    ENERGY & FUELS, 2024, 38 (19) : 18940 - 18954
  • [7] Co-Cu-CaO catalysts for high-purity hydrogen from sorption-enhanced steam reforming of glycerol
    Dang, Chengxiong
    Wang, Hongjuan
    Yu, Hao
    Peng, Feng
    APPLIED CATALYSIS A-GENERAL, 2017, 533 : 9 - 16
  • [8] Development of a bifunctional material incorporating carbon microspheres for the intensified hydrogen production by sorption-enhanced glycerol steam reforming
    Olivier, Antoine
    Desgagn, Alex
    Iliuta, Maria C.
    CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2024, 200
  • [9] High-Purity Hydrogen Production by Sorption-Enhanced Steam Reforming of Ethanol: A Cyclic Operation Simulation Study
    Wu, Yi-Jiang
    Li, Ping
    Yu, Jian-Guo
    Cunha, Adelino F.
    Rodrigues, Alirio E.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (20) : 8515 - 8527
  • [10] Continuous high-purity hydrogen production by sorption enhanced steam reforming of ethanol over modified lithium silicate
    Wang, Nana
    Feng, Yuchuan
    Guo, Xin
    Ni, Shiyi
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (16) : 10119 - 10130