Examining the Effects of Slice Thickness on the Reproducibility of CT Radiomics for Patients with Colorectal Liver Metastases

被引:0
|
作者
Peoples, Jacob J. [1 ]
Hamghalam, Mohammad [1 ,2 ]
James, Imani [3 ]
Wasim, Maida [3 ]
Gangai, Natalie [3 ]
Kang, HyunSeon Christine [4 ]
Rong, Xiujiang John [5 ]
Chun, Yun Shin [6 ]
Do, Richard K. G. [3 ]
Simpson, Amber L. [1 ,7 ]
机构
[1] Queens Univ, Sch Comp, Kingston, ON, Canada
[2] Qazvin Branch, Islamic Azad Univ, Dept Elect Engn, Qazvin, Iran
[3] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Abdominal Imaging, Houston, TX USA
[5] Univ Texas MD Anderson Canc Ctr, Dept Imaging Phys, Houston, TX USA
[6] Univ Texas MD Anderson Canc Ctr, Dept Surg Oncol, Houston, TX USA
[7] Queens Univ, Dept Biomed & Mol Sci, Kingston, ON, Canada
基金
美国国家卫生研究院;
关键词
Radiomics; Reproducibility; Colorectal liver metastases; Imaging biomarkers; Computed tomography; Prospective studies; CONCORDANCE CORRELATION-COEFFICIENT; FEATURE STABILITY; FEATURES;
D O I
10.1007/978-3-031-44336-7_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an analysis of 81 patients with colorectal liver metastases from two major cancer centers prospectively enrolled in an imaging trial to assess reproducibility of radiomic features in contrastenhanced CT. All scans were reconstructed with different slice thicknesses and levels of iterative reconstruction. Radiomic features were extracted from the liver parenchyma and largest metastasis from each reconstruction, using different levels of resampling and methods of feature aggregation. The prognostic value of reproducible features was tested using Cox proportional hazards to model overall survival in an independent, public data set of 197 hepatic resection patients with colorectal liver metastases. Our results show that larger differences in slice thickness reduced the concordance of features (p < 10-6). Extracting features with 2.5D aggregation and no axial resampling produced the most robust features, and the best test-set performance in the survival model on the independent data set (C-index = 0.65). Across all feature extraction methods, restricting the survival models to use reproduciblefeatures had no statistically significant effect on the test set performance (p = 0.98). In conclusion, our results show that feature extraction settings can positively impact the robustness of radiomics features to variations in slice thickness, without negatively effecting prognostic performance.
引用
收藏
页码:42 / 52
页数:11
相关论文
共 50 条
  • [21] Baseline PET/CT deep radiomics signature apply for identifying bevacizumab sensitivity of RAS-mutant colorectal cancer liver metastases patients
    Chang, W.
    Zhou, S.
    Sun, D.
    Liu, Y.
    Mao, W.
    Cen, W.
    Tang, W.
    Ye, L.
    Wang, L.
    Xu, J.
    ANNALS OF ONCOLOGY, 2022, 33 : S1449 - S1449
  • [22] Preoperative CT and survival data for patients undergoing resection of colorectal liver metastases
    Amber L. Simpson
    Jacob Peoples
    John M. Creasy
    Gabor Fichtinger
    Natalie Gangai
    Krishna N. Keshavamurthy
    Andras Lasso
    Jinru Shia
    Michael I. D’Angelica
    Richard K. G. Do
    Scientific Data, 11
  • [23] Preoperative CT and survival data for patients undergoing resection of colorectal liver metastases
    Simpson, Amber L.
    Peoples, Jacob
    Creasy, John M.
    Fichtinger, Gabor
    Gangai, Natalie
    Keshavamurthy, Krishna N.
    Lasso, Andras
    Shia, Jinru
    D'Angelica, Michael I.
    Do, Richard K. G.
    SCIENTIFIC DATA, 2024, 11 (01)
  • [24] Reproducibility of static FDG-PET in liver metastases of colorectal cancer
    Heijmen, L.
    van Laarhoven, H. W. M.
    Ter Voert, E. E. G. W.
    Heerschap, A.
    De Wilt, H. J. A.
    Punt, C. J. A.
    Oyen, W. J. G.
    de Geus-Oei, L.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2011, 38 : S239 - S239
  • [25] Deep Learning for Automated Segmentation of Liver Lesions at CT in Patients with Colorectal Cancer Liver Metastases
    Vorontsov, Eugene
    Cerny, Milena
    Regnier, Philippe
    Di Jorio, Lisa
    Pal, Christopher J.
    Lapointe, Real
    Vandenbroucke-Menu, Franck
    Turcotte, Simon
    Kadoury, Samuel
    Tang, An
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2019, 1 (02)
  • [26] Prediction of transformation in the histopathological growth pattern of colorectal liver metastases after chemotherapy using CT-based radiomics
    Wei, Shengcai
    Gou, Xinyi
    Zhang, Yinli
    Cui, Jingjing
    Liu, Xiaoming
    Hong, Nan
    Sheng, Weiqi
    Cheng, Jin
    Wang, Yi
    CLINICAL & EXPERIMENTAL METASTASIS, 2024, 41 (2) : 143 - 154
  • [27] Predicting local tumour progression after ablation for colorectal liver metastases: CT-based radiomics of the ablation zone
    Staal, F. C. R.
    Taghavi, M.
    van der Reijd, D. J.
    Gomez, F. M.
    Imani, F.
    Klompenhouwer, E. G.
    Meek, D.
    Roberti, S.
    de Boer, M.
    Lambregts, D. M. J.
    Beets-Tan, R. G. H.
    Maas, M.
    EUROPEAN JOURNAL OF RADIOLOGY, 2021, 141
  • [28] PATIENTS WANTED WITH COLORECTAL LIVER METASTASES
    DURRLEMAN, S
    BRITISH MEDICAL JOURNAL, 1988, 297 (6640): : 70 - 70
  • [29] Distinguishing pure histopathological growth patterns of colorectal liver metastases on CT using deep learning and radiomics: a pilot study
    Starmans, Martijn P. A.
    Buisman, Florian E.
    Renckens, Michel
    Willemssen, Francois E. J. A.
    van der Voort, Sebastian R.
    Groot Koerkamp, Bas
    Grunhagen, Dirk J.
    Niessen, Wiro J.
    Vermeulen, Peter B.
    Verhoef, Cornelis
    Visser, Jacob J.
    Klein, Stefan
    CLINICAL & EXPERIMENTAL METASTASIS, 2021, 38 (05) : 483 - 494
  • [30] CT-based radiomics analysis to predict local progression of recurrent colorectal liver metastases after microwave ablation
    Hu, Hao
    Chi, Jia Chang
    Zhai, Bo
    Guo, Jin He
    MEDICINE, 2023, 102 (52) : E36586