Examining the Effects of Slice Thickness on the Reproducibility of CT Radiomics for Patients with Colorectal Liver Metastases

被引:0
|
作者
Peoples, Jacob J. [1 ]
Hamghalam, Mohammad [1 ,2 ]
James, Imani [3 ]
Wasim, Maida [3 ]
Gangai, Natalie [3 ]
Kang, HyunSeon Christine [4 ]
Rong, Xiujiang John [5 ]
Chun, Yun Shin [6 ]
Do, Richard K. G. [3 ]
Simpson, Amber L. [1 ,7 ]
机构
[1] Queens Univ, Sch Comp, Kingston, ON, Canada
[2] Qazvin Branch, Islamic Azad Univ, Dept Elect Engn, Qazvin, Iran
[3] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY USA
[4] Univ Texas MD Anderson Canc Ctr, Dept Abdominal Imaging, Houston, TX USA
[5] Univ Texas MD Anderson Canc Ctr, Dept Imaging Phys, Houston, TX USA
[6] Univ Texas MD Anderson Canc Ctr, Dept Surg Oncol, Houston, TX USA
[7] Queens Univ, Dept Biomed & Mol Sci, Kingston, ON, Canada
基金
美国国家卫生研究院;
关键词
Radiomics; Reproducibility; Colorectal liver metastases; Imaging biomarkers; Computed tomography; Prospective studies; CONCORDANCE CORRELATION-COEFFICIENT; FEATURE STABILITY; FEATURES;
D O I
10.1007/978-3-031-44336-7_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present an analysis of 81 patients with colorectal liver metastases from two major cancer centers prospectively enrolled in an imaging trial to assess reproducibility of radiomic features in contrastenhanced CT. All scans were reconstructed with different slice thicknesses and levels of iterative reconstruction. Radiomic features were extracted from the liver parenchyma and largest metastasis from each reconstruction, using different levels of resampling and methods of feature aggregation. The prognostic value of reproducible features was tested using Cox proportional hazards to model overall survival in an independent, public data set of 197 hepatic resection patients with colorectal liver metastases. Our results show that larger differences in slice thickness reduced the concordance of features (p < 10-6). Extracting features with 2.5D aggregation and no axial resampling produced the most robust features, and the best test-set performance in the survival model on the independent data set (C-index = 0.65). Across all feature extraction methods, restricting the survival models to use reproduciblefeatures had no statistically significant effect on the test set performance (p = 0.98). In conclusion, our results show that feature extraction settings can positively impact the robustness of radiomics features to variations in slice thickness, without negatively effecting prognostic performance.
引用
收藏
页码:42 / 52
页数:11
相关论文
共 50 条
  • [1] Effects of slice thickness on CT radiomics features and models for staging liver fibrosis caused by chronic liver disease
    Hu, Peng
    Chen, Liye
    Zhong, Yaoying
    Lin, Yudong
    Yu, Xiaojing
    Hu, Xi
    Tao, Xinwei
    Lin, Shushen
    Niu, Tianye
    Chen, Ran
    Wu, Xia
    Sun, Jihong
    JAPANESE JOURNAL OF RADIOLOGY, 2022, 40 (10) : 1061 - 1068
  • [2] Effects of slice thickness on CT radiomics features and models for staging liver fibrosis caused by chronic liver disease
    Peng Hu
    Liye Chen
    Yaoying Zhong
    Yudong Lin
    Xiaojing Yu
    Xi Hu
    Xinwei Tao
    Shushen Lin
    Tianye Niu
    Ran Chen
    Xia Wu
    Jihong Sun
    Japanese Journal of Radiology, 2022, 40 : 1061 - 1068
  • [3] Reproducibility of Laplacian Wall Thickness Measurements of the Gallbladder with Varying CT Slice Thickness
    M. N. Prasad
    M. S. Brown
    C. Ni
    D. Margolis
    M. Douek
    S. Raman
    D. Lu
    J. G. Goldin
    S. K. Warfield
    Journal of Signal Processing Systems, 2009, 55 : 67 - 75
  • [4] Reproducibility of Laplacian Wall Thickness Measurements of the Gallbladder with Varying CT Slice Thickness
    Prasad, M. N.
    Brown, M. S.
    Ni, C.
    Margolis, D.
    Douek, M.
    Raman, S.
    Lu, D.
    Goldin, J. G.
    Warfield, S. K.
    JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2009, 55 (1-3): : 67 - 75
  • [5] A CT-based radiomics nomogram for predicting histopathologic growth patterns of colorectal liver metastases
    Sun, Chao
    Liu, Xuehuan
    Sun, Jie
    Dong, Longchun
    Wei, Feng
    Bao, Cuiping
    Zhong, Jin
    Li, Yiming
    JOURNAL OF CANCER RESEARCH AND CLINICAL ONCOLOGY, 2023, 149 (12) : 9543 - 9555
  • [6] A CT-based radiomics nomogram for predicting histopathologic growth patterns of colorectal liver metastases
    Chao Sun
    Xuehuan Liu
    Jie Sun
    Longchun Dong
    Feng Wei
    Cuiping Bao
    Jin Zhong
    Yiming Li
    Journal of Cancer Research and Clinical Oncology, 2023, 149 : 9543 - 9555
  • [7] CT-Based Radiomics Analysis to Predict Histopathological Outcomes Following Liver Resection in Colorectal Liver Metastases
    Granata, Vincenza
    Fusco, Roberta
    Setola, Sergio Venanzio
    De Muzio, Federica
    Dell' Aversana, Federica
    Cutolo, Carmen
    Faggioni, Lorenzo
    Miele, Vittorio
    Izzo, Francesco
    Petrillo, Antonella
    CANCERS, 2022, 14 (07)
  • [8] Correction: Colorectal liver metastases patients prognostic assessment: prospects and limits of radiomics and radiogenomics
    Vincenza Granata
    Roberta Fusco
    Sergio Venanzio Setola
    Roberta Galdiero
    Nicola Maggialetti
    Renato Patrone
    Alessandro Ottaiano
    Guglielmo Nasti
    Lucrezia Silvestro
    Antonio Cassata
    Francesca Grassi
    Antonio Avallone
    Francesco Izzo
    Antonella Petrillo
    Infectious Agents and Cancer, 18
  • [9] Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases
    Taghavi, Marjaneh
    Trebeschi, Stefano
    Simoes, Rita
    Meek, David B.
    Beckers, Rianne C. J.
    Lambregts, Doenja M. J.
    Verhoef, Cornelis
    Houwers, Janneke B.
    van der Heide, Uulke A.
    Beets-Tan, Regina G. H.
    Maas, Monique
    ABDOMINAL RADIOLOGY, 2021, 46 (01) : 249 - 256
  • [10] Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases
    Marjaneh Taghavi
    Stefano Trebeschi
    Rita Simões
    David B. Meek
    Rianne C. J. Beckers
    Doenja M. J. Lambregts
    Cornelis Verhoef
    Janneke B. Houwers
    Uulke A. van der Heide
    Regina G. H. Beets-Tan
    Monique Maas
    Abdominal Radiology, 2021, 46 : 249 - 256