Enhancing heart failure diagnosis through multi-modal data integration and deep learning

被引:0
作者
Liu, Yi [1 ,2 ,3 ,4 ]
Li, Dengao [2 ,3 ,4 ,5 ]
Zhao, Jumin [1 ,2 ,3 ,4 ]
Liang, Yuchen [6 ]
机构
[1] Taiyuan Univ Technol, Coll Informat & Comp, Taiyuan 030024, Peoples R China
[2] Key Lab Big Data Fus Anal & Applicat Shanxi Prov, Taiyuan 030024, Peoples R China
[3] Intelligent Percept Engn Technol Ctr Shanxi, Taiyuan 030024, Peoples R China
[4] Shanxi Prov Engn Technol Res Ctr Spatial Informat, Taiyuan 030024, Peoples R China
[5] Taiyuan Univ Technol, Coll Data Sci, Taiyuan 030024, Peoples R China
[6] Shanxi Cardiovasc Hosp, Taiyuan 030027, Peoples R China
基金
中国国家自然科学基金;
关键词
Heart failure; Deep learning; Classification; Multimodal fusion; Medical; FUSION; ECG;
D O I
10.1007/s11042-023-17716-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the realm of medical data processing, the surge in electronic health records has opened avenues for addressing clinical challenges. Although machine and deep learning methods have gained traction, they often overlook the potential of multimodal data. Thus, multimodal fusion emerges as a prominent field in artificial intelligence research, capitalizing on the synergy between diverse data types to enhance classification models. This study introduces an innovative technique tailored for heart failure classification, harnessing the power of multimodal features. The proposed approach utilizes three distinct feature types: electrocardiogram, chest X-ray, and structured text data. These are integrated to form a comprehensive multimodal fusion model. This study demonstrates the superior performance of the proposed model compared to single-modality counterparts, even in the presence of noise, through a rigorous experiment involving 440 cases. It pioneers the integration of multimodal information using deep learning techniques for heart failure assessment, offering novel insights and a practical approach for accurate detection and treatment.
引用
收藏
页码:55259 / 55281
页数:23
相关论文
共 31 条
  • [1] Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals
    Acharya, U. Rajendra
    Fujita, Hamido
    Oh, Shu Lih
    Hagiwara, Yuki
    Tan, Jen Hong
    Adam, Muhammad
    Tan, Ru San
    [J]. APPLIED INTELLIGENCE, 2019, 49 (01) : 16 - 27
  • [2] Multimodal Assessment of Parkinson's Disease: A Deep Learning Approach
    Camilo Vasquez-Correa, Juan
    Arias-Vergara, Tomas
    Orozco-Arroyave, J. R.
    Eskofier, Bjoern
    Klucken, Jochen
    Noeth, Elmar
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2019, 23 (04) : 1618 - 1630
  • [3] A nomogram to predict the in-hospital mortality of patients with congestive heart failure and chronic kidney disease
    Chen, Jiamin
    Li, Ying
    Liu, Peng
    Wu, Huihui
    Su, Guohai
    [J]. ESC HEART FAILURE, 2022, 9 (05): : 3167 - 3176
  • [4] A new automated CNN deep learning approach for identification of ECG congestive heart failure and arrhythmia using constant-Q non-stationary Gabor transform
    Eltrass, Ahmed S.
    Tayel, Mazhar B.
    Ammar, Abeer, I
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 65
  • [5] Parallel score fusion of ECG and fingerprint for human authentication based on convolution neural network
    Hammad, Mohamed
    Wang, Kuanquan
    [J]. COMPUTERS & SECURITY, 2019, 81 : 107 - 122
  • [6] Utilizing longitudinal data in assessing all-cause mortality in patients hospitalized with heart failure
    Herman, Robert
    Vanderheyden, Marc
    Vavrik, Boris
    Beles, Monika
    Palus, Timotej
    Nelis, Olivier
    Goethals, Marc
    Verstreken, Sofie
    Dierckx, Riet
    Penicka, Martin
    Heggermont, Ward
    Bartunek, Jozef
    [J]. ESC HEART FAILURE, 2022, 9 (05): : 3575 - 3584
  • [7] Automated detection of coronary artery disease, myocardial infarction and congestive heart failure using GaborCNN model with ECG signals
    Jahmunah, V.
    Ng, E. Y. K.
    San, Tan Ru
    Acharya, U. Rajendra
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 134
  • [8] Kingma DP, 2014, ADV NEUR IN, V27
  • [9] Multimodal machine learning in precision health: A scoping review
    Kline, Adrienne
    Wang, Hanyin
    Li, Yikuan
    Dennis, Saya
    Hutch, Meghan
    Xu, Zhenxing
    Wang, Fei
    Cheng, Feixiong
    Luo, Yuan
    [J]. NPJ DIGITAL MEDICINE, 2022, 5 (01)
  • [10] ECG signals-based automated diagnosis of congestive heart failure using Deep CNN and LSTM architecture
    Kusuma, S.
    Jothi, K. R.
    [J]. BIOCYBERNETICS AND BIOMEDICAL ENGINEERING, 2022, 42 (01) : 247 - 257