Almost periodic fractional fuzzy dynamic equations on timescales: A survey

被引:0
作者
Wang, Chao [1 ]
Tan, Ying [1 ]
Agarwal, Ravi P. [2 ,3 ,4 ]
机构
[1] Yunnan Univ, Dept Math, Kunming, Peoples R China
[2] Texas A&M Univ, Dept Math, Kingsville, TX USA
[3] Florida Inst Technol, Melbourne, FL USA
[4] Texas A&M Univ, Dept Math, Kingsville, TX 78363 USA
关键词
almost periodic; fractional calculus; fuzzy fractional dynamic equations; timescales; INITIAL-VALUE PROBLEM; TIME SCALES; DIFFERENTIAL-EQUATIONS; EXPONENTIAL STABILITY; NUMERICAL-SOLUTION; VALUED FUNCTIONS; NEURAL-NETWORKS; EULER-LAGRANGE; TAU METHOD; CALCULUS;
D O I
10.1002/mma.9751
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we systematically present some main results of the fractional calculus, almost periodic functions, fuzzy functions, fuzzy fractional calculus, and almost periodic generalized fuzzy dynamic equations on timescales. Moreover, the potential future research of almost periodic fractional fuzzy dynamic equations on timescales is discussed. The results presented in this survey can be applied to study the qualitative theory of almost periodic fractional fuzzy dynamic equations and fuzzy fractional calculus on timescales.
引用
收藏
页码:2345 / 2401
页数:57
相关论文
共 125 条
  • [1] Abdeljawad T., 2017, Arab Journal of Mathematical Sciences, V23, P157
  • [2] A new periodicity concept for time scales
    Adivar, Murat
    [J]. MATHEMATICA SLOVACA, 2013, 63 (04) : 817 - 828
  • [3] Agarwal P. R., 1999, Results Math, V35, P3, DOI [10.1007/BF03322019, DOI 10.1007/BF03322019, 10.1007/bf03322019]
  • [4] Dynamic equations on time scales: a survey
    Agarwal, R
    Bohner, M
    O'Regan, D
    Peterson, A
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) : 1 - 26
  • [5] F-contraction mappings on metric-like spaces in connection with integral equations on time scales
    Agarwal, Ravi P.
    Aksoy, Umit
    Karapinar, Erdal
    Erhan, Inci M.
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (03)
  • [6] A survey on fuzzy fractional differential and optimal control nonlocal evolution equations
    Agarwal, Ravi P.
    Baleanu, Dumitru
    Nieto, Juan J.
    Torres, Delfim F. M.
    Zhou, Yong
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 : 3 - 29
  • [7] Fractional modeling and control of a complex nonlinear energy supply-demand system
    Aghababa, Mohammad Pourmahmood
    [J]. COMPLEXITY, 2015, 20 (06) : 74 - 86
  • [8] Special Issue: Fractional Derivatives and their Applications - Introduction
    Agrawal, OP
    Machado, JAT
    Sabatier, J
    [J]. NONLINEAR DYNAMICS, 2004, 38 (1-4) : 1 - 2
  • [9] Formulation of Euler-Lagrange equations for fractional variational problems
    Agrawal, OP
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 272 (01) : 368 - 379
  • [10] Uncertain viscoelastic models with fractional order: A new spectral tau method to study the numerical simulations of the solution
    Ahmadian, A.
    Ismail, F.
    Salahshour, S.
    Baleanu, D.
    Ghaemi, F.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 53 : 44 - 64