Fast parallel IGA-ADS solver for time-dependent Maxwell's equations

被引:2
作者
Los, Marcin [1 ]
Wozniak, Maciej [1 ]
Pingali, Keshav [3 ]
Castillo, Luis Emilio Garcia [2 ]
Alvarez-Arramberri, Julen [4 ]
Pardo, David [4 ,5 ,6 ]
Paszynski, Maciej [1 ]
机构
[1] AGH Univ Krakow, Krakow, Poland
[2] Univ Carlos III Madrid, Getafe, Spain
[3] Univ Texas Austin, Oden Inst, Austin, TX USA
[4] Univ Basque Country UPV EHU, Leioa, Spain
[5] Basque Ctr Appl Math BCAM, Bilbao, Spain
[6] Ikerbasque, Bilbao, Spain
基金
欧盟地平线“2020”;
关键词
Variational splitting; Time-dependent Maxwell; Absorbing boundary conditions; Isogeometric analysis; NONREFLECTING BOUNDARY-CONDITIONS; CONVERGENCE;
D O I
10.1016/j.camwa.2023.09.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a simulator for time-dependent Maxwell's equations with linear computational cost. We employ B-spline basis functions as considered in the isogeometric analysis (IGA). We focus on non-stationary Maxwell's equations defined on a regular patch of elements. We employ the idea of alternating-directions splitting (ADS) and employ a second-order accurate time-integration scheme for the time-dependent Maxwell's equations in a weak form. After discretization, the resulting stiffness matrix exhibits a Kronecker product structure. Thus, it enables linear computational cost LU factorization. Additionally, we derive a formulation for absorbing boundary conditions (ABCs) suitable for direction splitting. We perform numerical simulations of the scattering problem (traveling pulse wave) to verify the ABC. We simulate the radiation of electromagnetic (EM) waves from the dipole antenna. We verify the order of the time integration scheme using a manufactured solution problem. We then simulate magnetotelluric measurements. Our simulator is implemented in a shared memory parallel machine, with the GALOIS library supporting the parallelization. We illustrate the parallel efficiency with strong and weak scalability tests corresponding to non-stationary Maxwell simulations.
引用
收藏
页码:36 / 49
页数:14
相关论文
共 27 条
[1]   Nonreflecting boundary conditions for the time-dependent wave equation [J].
Alpert, B ;
Greengard, L ;
Hagstrom, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 180 (01) :270-296
[2]  
[Anonymous], 2015, FINITE ELEMENT METHO
[3]  
Balanis CA., 1989, ADV ENG ELECTROMAGNE, V2
[4]   RADIATION BOUNDARY-CONDITIONS FOR WAVE-LIKE EQUATIONS [J].
BAYLISS, A ;
TURKEL, E .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (06) :707-725
[5]   A variational splitting of high-order linear multistep methods for heat transfer and advection-diffusion parabolic problems [J].
Behnoudfar, Pouria ;
Calo, Victor Manuel ;
Los, Marcin ;
Maczuga, Pawel ;
Paszynski, Maciej .
JOURNAL OF COMPUTATIONAL SCIENCE, 2022, 63
[6]   Explicit high-order generalized-α methods for isogeometric analysis of structural dynamics [J].
Behnoudfar, Pouria ;
Loli, Gabriele ;
Reali, Alessandro ;
Sangalli, Giancarlo ;
Calo, Victor M. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 389
[7]   Split generalized-α method: A linear-cost solver for multi-dimensional second-order hyperbolic systems [J].
Behnoudfar, Pouria ;
Deng, Quanling ;
Calo, Victor M. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 376
[8]  
Cottrell J. A., 2009, Isogeometric Analysis: Toward Integration of CAD and FEA, DOI DOI 10.1016/j.advengsoft.2011.06.010
[9]  
Douglas J., 1956, T AM MATH SOC, V82, P421
[10]  
en wikipedia, 2019 redefinition of the SI base units-Wikipedia, the free encyclopedia