Bacillus velezensis SQR9 inhibition to fungal denitrification responsible for decreased N2O emissions from acidic soils

被引:8
|
作者
Huang, Mengyuan [1 ,2 ]
Zhang, Yihe [1 ,2 ]
Wu, Jie [1 ,2 ]
Wang, Yuxin [1 ,2 ]
Xie, Yuxin [1 ,2 ]
Geng, Yajun [1 ]
Zhang, Nan [2 ]
Michelsen, Anders [3 ]
Li, Shuqing [1 ,2 ,4 ]
Zhang, Ruifu [2 ]
Shen, Qirong [2 ]
Zou, Jianwen [1 ,2 ,4 ]
机构
[1] Nanjing Agr Univ, Coll Resources & Environm Sci, Key Lab ofLow carbon & Green Agr Southeastern Chin, Minist ofAg riculture & Rural Affairs, Nanjing, Peoples R China
[2] Jiangsu Key Lab & Engn Centerfor Solid Organ Waste, Jiangsu Collaborat Innovat Centerfor Solid Organ W, Nanjing, Peoples R China
[3] Univ Copenhagen, Dept ofBiol, Terr Ecol Sect, Copenhagen, Denmark
[4] Nanjing Agr Univ, Nanjing 210095, Peoples R China
关键词
Functional gene; Plant growth-promoting microbe; Soil denitrification; N2O; Mitigation; NITROUS-OXIDE PRODUCTION; CONTROL FUSARIUM-WILT; BIOORGANIC FERTILIZER; ANTIFUNGAL ACTIVITY; MICROBIAL GENES; BACILLOMYCIN-D; PLANT-GROWTH; REDUCTASE; BACTERIA; AMYLOLIQUEFACIENS;
D O I
10.1016/j.scitotenv.2023.163789
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Tropical and subtropical acidic soils are hotspots of global terrestrial nitrous oxide (N2O) emissions, with N2O pro-duced primarily through denitrification. Plant growth-promoting microbes (PGPMs) may effectively mitigate soil N2O emissions from acidic soils, achieved through differential responses of bacterial and fungal denitrification to PGPMs. To test this hypothesis, we conducted a pot experiment and the associated laboratory trials to gain the under-lying insights into the PGPM Bacillus velezensis strain SQR9 effects on N2O emissions from acidic soils. SQR9 inocula-tion significantly reduced soil N2O emissions by 22.6-33.5 %, dependent on inoculation dose, and increased the bacterial AOB, nirK and nosZ genes abundance, facilitating the reduction of N2O to N2 in denitrification. The relative contribution of fungi to the soil denitrification rate was 58.4-77.1 %, suggesting that the N2O emissions derived mainly from fungal denitrification. The SQR9 inoculation significantly inhibited the fungal denitrification and down-regulated fungal nirK gene transcript, dependent on the SQR9 sfp gene, which was necessary for secondary me-tabolite synthesis. Therefore, our study provides new evidence that decreased N2O emissions from acidic soils can be due to fungal denitrification inhibited by PGPM SQR9 inoculation.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] EFFECTIVENESS OF ACETYLENE INHIBITION OF N2O REDUCTION FOR MEASURING DENITRIFICATION IN SOILS OF VARYING WETNESS
    AULAKH, MS
    DORAN, JW
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 1991, 22 (1-2) : 11 - 21
  • [22] Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space
    Bateman, EJ
    Baggs, EM
    BIOLOGY AND FERTILITY OF SOILS, 2005, 41 (06) : 379 - 388
  • [23] Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space
    E. J. Bateman
    E. M. Baggs
    Biology and Fertility of Soils, 2005, 41 : 379 - 388
  • [24] Assessing and mitigating N2O emissions from agricultural soils
    Mosier, AR
    Duxbury, JM
    Freney, JR
    Heinemeyer, O
    Minami, K
    CLIMATIC CHANGE, 1998, 40 (01) : 7 - 38
  • [25] Assessing and Mitigating N2O Emissions from Agricultural Soils
    A.R. Mosier
    J.M. Duxbury
    J.R. Freney
    O. Heinemeyer
    K. Minami
    Climatic Change, 1998, 40 : 7 - 38
  • [26] Ascription of nosZ gene, pH and copper for mitigating N2O emissions in acidic soils
    Shaaban, Muhammad
    Wang, Xiao-Ling
    Song, Peng
    Hou, Xiaogai
    Wu, Yupeng
    Hu, Ronggui
    ENVIRONMENTAL RESEARCH, 2023, 237
  • [27] Generalized model for NOx and N2O emissions from soils
    Parton, WJ
    Holland, EA
    Del Grosso, SJ
    Hartman, MD
    Martin, RE
    Mosier, AR
    Ojima, DS
    Schimel, DS
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D15) : 17403 - 17419
  • [28] N2O emissions from agricultural soils in Canada -: Preface
    Rochette, Philippe
    McGinn, Sean
    CANADIAN JOURNAL OF SOIL SCIENCE, 2008, 88 (02) : 131 - 132
  • [29] Developing an inventory of N2O emissions from British soils
    Sozanska, M
    Skiba, U
    Metcalfe, S
    ATMOSPHERIC ENVIRONMENT, 2002, 36 (06) : 987 - 998
  • [30] Inventories of N2O and NO emissions from European forest soils
    Kesik, M
    Ambus, P
    Baritz, R
    Brüggemann, NB
    Butterbach-Bahl, K
    Damm, M
    Duyzer, J
    Horváth, L
    Kiese, R
    Kitzler, B
    Leip, A
    Li, C
    Pihlatie, M
    Pilegaard, K
    Seufert, G
    Simpson, D
    Skiba, U
    Smiatek, G
    Vesala, T
    Zechmeister-Boltenstern, S
    BIOGEOSCIENCES, 2005, 2 (04) : 353 - 375