Sparse Convoluted Rank Regression in High Dimensions
被引:8
|
作者:
Zhou, Le
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R ChinaHong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
Zhou, Le
[1
]
Wang, Boxiang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA USAHong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
Wang, Boxiang
[2
]
Zou, Hui
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USAHong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
Zou, Hui
[3
]
机构:
[1] Hong Kong Baptist Univ, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
[2] Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA USA
[3] Univ Minnesota, Sch Stat, Minneapolis, MN 55455 USA
Convolution;
Efficiency;
High dimensions;
Information criterion;
Rank regression;
NONCONCAVE PENALIZED LIKELIHOOD;
QUANTILE REGRESSION;
VARIABLE SELECTION;
D O I:
10.1080/01621459.2023.2202433
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Wang et al. studied the high-dimensional sparse penalized rank regression and established its nice theoretical properties. Compared with the least squares, rank regression can have a substantial gain in estimation efficiency while maintaining a minimal relative efficiency of 86.4%. However, the computation of penalized rank regression can be very challenging for high-dimensional data, due to the highly nonsmooth rank regression loss. In this work we view the rank regression loss as a nonsmooth empirical counterpart of a population level quantity, and a smooth empirical counterpart is derived by substituting a kernel density estimator for the true distribution in the expectation calculation. This view leads to the convoluted rank regression loss and consequently the sparse penalized convoluted rank regression (CRR) for high-dimensional data. We prove some interesting asymptotic properties of CRR. Under the same key assumptions for sparse rank regression, we establish the rate of convergence of the l(1)-penalized CRR for a tuning free penalization parameter and prove the strong oracle property of the folded concave penalized CRR. We further propose a high-dimensional Bayesian information criterion for selecting the penalization parameter in folded concave penalized CRR and prove its selection consistency. We derive an efficient algorithm for solving sparse convoluted rank regression that scales well with high dimensions. Numerical examples demonstrate the promising performance of the sparse convoluted rank regression over the sparse rank regression. Our theoretical and numerical results suggest that sparse convoluted rank regression enjoys the best of both sparse least squares regression and sparse rank regression. for this article are available online.
机构:
Kansas State Univ, Dept Stat, 101 Dickens Hall,1116 Midcampus Dr N, Manhattan, KS 66506 USAKansas State Univ, Dept Stat, 101 Dickens Hall,1116 Midcampus Dr N, Manhattan, KS 66506 USA
Yang, Dunfu
Goh, Gyuhyeong
论文数: 0引用数: 0
h-index: 0
机构:
Kansas State Univ, Dept Stat, 101 Dickens Hall,1116 Midcampus Dr N, Manhattan, KS 66506 USAKansas State Univ, Dept Stat, 101 Dickens Hall,1116 Midcampus Dr N, Manhattan, KS 66506 USA
Goh, Gyuhyeong
Wang, Haiyan
论文数: 0引用数: 0
h-index: 0
机构:
Kansas State Univ, Dept Stat, 101 Dickens Hall,1116 Midcampus Dr N, Manhattan, KS 66506 USAKansas State Univ, Dept Stat, 101 Dickens Hall,1116 Midcampus Dr N, Manhattan, KS 66506 USA
机构:
Univ Penn, 400 Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USAUniv Penn, 400 Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USA
Ma, Zhuang
Ma, Zongming
论文数: 0引用数: 0
h-index: 0
机构:
Univ Penn, 400 Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USAUniv Penn, 400 Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USA
Ma, Zongming
Sun, Tingni
论文数: 0引用数: 0
h-index: 0
机构:
Univ Maryland, 4176 Campus Dr,William E Kirwan Hall, College Pk, MD 20742 USAUniv Penn, 400 Jon M Huntsman Hall,3730 Walnut St, Philadelphia, PA 19104 USA
机构:
Nankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
Fudan Univ, Sch Management, Shanghai 200433, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
Lu, Wenqi
Zhu, Zhongyi
论文数: 0引用数: 0
h-index: 0
机构:
Nankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
Zhu, Zhongyi
Lian, Heng
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Sch Management, Shanghai 200433, Peoples R China
City Univ Hong Kong, Dept Math, Kowloon, Hong Kong, Peoples R China
CityU Shenzhen Res Inst, Shenzhen, Peoples R ChinaNankai Univ, Sch Stat & Data Sci, Tianjin, Peoples R China
机构:
Fudan Univ, Sch Data Sci, Shanghai, Peoples R China
Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ USA
Princeton Univ, Princeton, NJ 08544 USAFudan Univ, Sch Data Sci, Shanghai, Peoples R China
Fan, Jianqing
Lou, Zhipeng
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ USAFudan Univ, Sch Data Sci, Shanghai, Peoples R China
Lou, Zhipeng
Yu, Mengxin
论文数: 0引用数: 0
h-index: 0
机构:
Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ USAFudan Univ, Sch Data Sci, Shanghai, Peoples R China