Residual Carbon Derived from Different Maize Parts Differed in Soil Organic Carbon Fractions as Affected by Soil Fertility

被引:1
作者
Wang, Mengmeng [1 ,2 ,3 ]
Pei, Jiubo [1 ,2 ,3 ]
Yu, Yaxi [1 ,2 ,3 ]
Wang, Siyin [1 ,2 ,3 ]
机构
[1] Shenyang Agr Univ, Coll Land & Environm, Shenyang 110866, Peoples R China
[2] Natl Dev & Reform Commiss, Natl Engn Res Ctr Efficient Utilizat Soil & Fertil, Shenyang 110866, Peoples R China
[3] Minist Agr & Rural Affairs, Key Lab Arable Land Conservat Northeast China, Shenyang 110866, Peoples R China
来源
AGRONOMY-BASEL | 2023年 / 13卷 / 04期
基金
中国国家自然科学基金; 美国国家科学基金会; 国家重点研发计划;
关键词
C-13-labeled maize residual parts; dissolved organic carbon; particulate organic carbon; soil fertility; LONG-TERM FERTILIZATION; CROP RESIDUES; MATTER; MANAGEMENT; QUALITY; POOLS; STRAW; DECOMPOSITION; SENSITIVITY; TILLAGE;
D O I
10.3390/agronomy13041121
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Maize straw returning is one of the important measures to improve dryland soil organic carbon (SOC). However, the effects of different maize parts on SOC fractions with different soil fertility levels in situ are not exactly clear. Therefore, an in situ field incubation experiment over 540 days, by adding different C-13-labeled maize parts (root, stem and leaf) into low- (no fertilizer treatment) and high- (manure treatment) fertility soils, was conducted at a long-term brown earth experimental site in Shenyang of China to figure out the effects of different maize parts on SOC fractions (dissolved organic carbon (DOC) and particulate organic carbon (POC)). The results showed that the distribution-DOC ratio of low-fertility treatment was higher than that of high-fertility treatment in the period of rapid decomposition of straw. In both low- and high-fertility soils, the ratio of carbon to DOC in leaf residue was higher than that in root and stem residues. The proportion of root, stem and leaf residue converted to DOC in low-fertility soil was 4.51%, 3.89% and 5.00%, respectively. The proportion of root, stem and leaf residue converted to DOC in high-fertility soil was 4.10%, 3.65% and 4.11%, respectively. As for the distribution-POC ratio, during the period of rapid decomposition of straw, the ratio of carbon conversion from root and stem residue to POC was generally higher than that from leaf residue. The ratio of carbon conversion to POC of root, stem and leaf residues in high-fertility treatment was higher than that in low-fertility treatment. In low-fertility treatment, the proportion of root, stem and leaf residues converted to POC was 41.34%, 46.33% and 36.11%, respectively. The proportion of root, stem and leaf residue converted to POC in high-fertility soil was 46.48%, 44.45% and 41.14%, respectively. The results showed that, for DOC, a low fertility level and more leaf residue types were beneficial. While, for POC, root and stem residues with a high fertility level were beneficial. These results provide evidence that the addition of different parts of maize residues would have differing effects on DOC and POC. Leaf residues in low-fertility soils were more suitable for increasing DOC. Root and stem residues in high-fertility soils were more suitable for increasing POC. Nevertheless, we could not ignore the unmeasured SOC fractions that some of the residues could be converted to.
引用
收藏
页数:13
相关论文
共 41 条
[1]   Carbon fluxes from plants to soil and dynamics of microbial immobilization under plastic film mulching and fertilizer application using 13C pulse-labeling [J].
An, Tingting ;
Schaeffer, Sean ;
Li, Shuangyi ;
Fu, Shifeng ;
Pei, Jiubo ;
Li, Hui ;
Zhuang, Jie ;
Radosevich, Mark ;
Wang, Jingkuan .
SOIL BIOLOGY & BIOCHEMISTRY, 2015, 80 :53-61
[2]   Total carbon and nitrogen in the soils of the world [J].
Batjes, N. H. .
EUROPEAN JOURNAL OF SOIL SCIENCE, 2014, 65 (01) :10-21
[3]   Priming effect and C storage in semi-arid no-till spring crop rotations [J].
Bell, JM ;
Smith, JL ;
Bailey, VL ;
Bolton, H .
BIOLOGY AND FERTILITY OF SOILS, 2003, 37 (04) :237-244
[4]   Sensitivity of Labile Soil Organic Carbon Pools to Long-Term Fertilizer, Straw and Manure Management in Rice-Wheat System [J].
Benbi, Dinesh K. ;
Brar, Kiranvir ;
Toor, Amardeep S. ;
Sharma, Shivani .
PEDOSPHERE, 2015, 25 (04) :534-545
[5]   Dynamics of bacterial communities in relation to soil aggregate formation during the decomposition of 13C-labelled rice straw [J].
Blaud, A. ;
Lerch, T. Z. ;
Chevallier, T. ;
Nunan, N. ;
Chenu, C. ;
Brauman, A. .
APPLIED SOIL ECOLOGY, 2012, 53 :1-9
[6]   Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe [J].
Bongiorno, Giulia ;
Bunemann, Else K. ;
Oguejiofor, Chidinma U. ;
Meier, Jennifer ;
Gort, Gerrit ;
Comans, Rob ;
Mader, Paul ;
Brussaard, Lijbert ;
de Goede, Ron .
ECOLOGICAL INDICATORS, 2019, 99 :38-50
[7]   Comparison of soil organic matter composition after incubation with maize leaves, roots, and stems [J].
Clemente, Joyce S. ;
Simpson, Myrna J. ;
Simpson, Andre J. ;
Yanni, Sandra F. ;
Whalen, Joann K. .
GEODERMA, 2013, 192 :86-96
[8]   Long-term fertilization management affects the C utilization from crop residues by the soil micro-food web [J].
Cui, Shuyan ;
Liang, Siwei ;
Zhang, Xiaoke ;
Li, Yingbin ;
Liang, Wenju ;
Sun, Liangjie ;
Wang, Jingkuan ;
Bezemer, T. Martijn ;
Li, Qi .
PLANT AND SOIL, 2018, 429 (1-2) :335-348
[9]   Tracing the source and fate of dissolved organic matter in soil after incorporation of a 13C labelled residue: A batch incubation study [J].
De Troyer, I. ;
Amery, F. ;
Van Moorleghem, C. ;
Smolders, E. ;
Merckx, R. .
SOIL BIOLOGY & BIOCHEMISTRY, 2011, 43 (03) :513-519
[10]   LAND-USE EFFECTS ON THE COMPOSITION OF ORGANIC-MATTER IN PARTICLE-SIZE SEPARATES OF SOIL .1. LIGNIN AND CARBOHYDRATE SIGNATURE [J].
GUGGENBERGER, G ;
CHRISTENSEN, BT ;
ZECH, W .
EUROPEAN JOURNAL OF SOIL SCIENCE, 1994, 45 (04) :449-458