The enhanced photothermal characteristics of plasmonic ZrC/TiN composite nanofluids for direct absorption solar collectors

被引:35
作者
Wen, Jin [1 ]
Chang, Qingchao [1 ]
Zhu, Jishi [1 ]
Cui, Rui [1 ]
He, Cheng [1 ]
Yan, Xinxing [2 ]
Li, Xiaoke [1 ,3 ]
机构
[1] Chengdu Univ Technol, Coll Mat & Chem & Chem Engn, Chengdu 610059, Peoples R China
[2] Tianqi Lithium Corp, Lithium Resources & Lithium Mat Key Lab Sichuan Pr, Chengdu 610000, Peoples R China
[3] 1 Dongsan Rd, Chengdu 610059, Peoples R China
关键词
Nanofluids; Finite-difference time-domain; Solar thermal utilization; Photothermal conversion efficiency; CONVERSION PROPERTIES; THERMAL-CONDUCTIVITY; OPTICAL-PROPERTIES; ETHYLENE-GLYCOL; HEAT-TRANSFER; NANOPARTICLES; PERFORMANCE; SUSPENSIONS; EFFICIENCY; STABILITY;
D O I
10.1016/j.renene.2023.02.095
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The selection of heat transfer medium is indispensable for the efficient realization of photothermal conversion. Nanofluids, thanks to their enhanced thermal properties and possible heat transfer applications, have been a topic of intense research. Also, nanofluid is an ideal working fluid for direct absorption solar collectors (DASCs). In this work, the stable ZrC/TiN nanofluids with high light absorption was prepared while a new irradiation mode was used to improve the photothermal conversion efficiency. Firstly, the composite optical characteristics of ZrC/TiN nanoparticles were numerically simulated by the finite-difference time-domain (FDTD) method. With the localized surface plasmon resonance (LSPR) effect by nano-TiN and the strong absorption exhibited by nano-ZrC, the 160 ppm ZrC/TiN nanofluids can achieve nearly 100% solar energy with a light distance of 1 cm. Secondly, the solar-to-thermal conversion efficiency of 160 ppm ZrC/TiN nanofluids was up to 73.7% though the side radiation, which was about 31% higher compared to the base fluids. In addition, this special flow model allows a lower temperature difference inside the ZrC/TiN nanofluids. Simulations and experiments showed that the ZrC/TiN nanofluids with the new irradiation mode has a relatively outstanding photothermal conversion capability, revealing the application prospects and potential of ZrC/TiN nanofluids in DASCs.
引用
收藏
页码:676 / 685
页数:10
相关论文
共 67 条
[1]   Temperature Dependence of Optical Constants for Chinese Liquid Hydrocarbon Fuels in the Near-Infrared (NIR) Region from Room Temperature to 400K [J].
Ai, Qing ;
Liu, Meng ;
Sun, Chuang ;
Xia, Xinlin .
APPLIED SPECTROSCOPY, 2017, 71 (08) :2026-2033
[2]   Process optimization and material properties for nanofluid manufacturing [J].
Chang, H. ;
Jwo, C. S. ;
Fan, P. S. ;
Pai, S. H. .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2007, 34 (3-4) :300-306
[3]   Optical absorption property and photo-thermal conversion performance of graphene oxide/water nanofluids with excellent dispersion stability [J].
Chen, Leilei ;
Xu, Chao ;
Liu, Jian ;
Fang, Xiaoming ;
Zhang, Zhengguo .
SOLAR ENERGY, 2017, 148 :17-24
[4]   Reduced graphene oxide dispersed nanofluids with improved photo thermal conversion performance for direct absorption solar collectors [J].
Chen, Leilei ;
Liu, Jian ;
Fang, Xiaoming ;
Zhang, Zhengguo .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 163 :125-133
[5]   Coupled plasmon resonances of Au thorn nanoparticles to enhance solar absorption performance [J].
Chen, Meijie ;
Wang, Xinzhi ;
Hu, Yanwei ;
He, Yurong .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2020, 250
[6]   Numerically investigating the optical properties of plasmonic metallic nanoparticles for effective solar absorption and heating [J].
Chen, Meijie ;
He, Yurong ;
Wang, Xinzhi ;
Hu, Yanwei .
SOLAR ENERGY, 2018, 161 :17-24
[7]   Investigation into Au nanofluids for solar photothermal conversion [J].
Chen, Meijie ;
He, Yurong ;
Huang, Jian ;
Zhu, Jiaqi .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 108 :1894-1900
[8]   Investigating the collector efficiency of silver nanofluids based direct absorption solar collectors [J].
Chen, Meijie ;
He, Yurong ;
Zhu, Jiaqi ;
Wen, Dongsheng .
APPLIED ENERGY, 2016, 181 :65-74
[9]  
Choi S. U. S., 1995, ASME-Publications-Fed, V231, P99
[10]   A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids [J].
Colangelo, Gianpiero ;
Favale, Ernani ;
de Risi, Arturo ;
Laforgia, Domenico .
APPLIED ENERGY, 2013, 111 :80-93