Thermal insulation of 3D printed complex and miniaturized SiO2 aerogels at medium-high temperatures

被引:19
作者
Wang, Yuting [1 ,2 ]
Chu, Chengyi [2 ]
Duan, Chenqi [2 ]
Dong, Jiajing [2 ]
Chen, Hao [2 ]
Ying, Songtao [2 ]
Guo, Jianjun [2 ]
Xu, Gaojie [2 ]
Hu, Fang [1 ,2 ]
Cheng, Yuchuan [2 ]
Sun, Aihua [2 ]
机构
[1] Ningbo Univ, Sch Mat Sci & Chem Engn, Ningbo 315211, Peoples R China
[2] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Key Lab Addit Mfg Mat Zhejiang Prov, Ningbo 315201, Peoples R China
关键词
3D printing; SiO2; aerogel; Opacitiers; Thermal insulation; Medium-high temperatures; SILICA AEROGELS; COMPOSITES;
D O I
10.1016/j.jnoncrysol.2023.122251
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Due to aerogel ' s network structure, specific surface area, and high porosity, SiO2 aerogel has excellent thermal insulation and inferior mechanical properties. It is challenging to produce micro-objects and complex-shaped objects accurately by traditional manufacturing method because of the fragile mechanical properties. Here, we use 3D printing to fabricate SiO2 aerogels. At the same time, we add opacifiers to reduce the aerogel ' s medium-high temperature thermal conductivity. The thermal conductivity of the SiO2 aerogel printed in the experiment is as low as 0.028 W/(m center dot K) at room temperature. The aerogel doped with 10 wt% SiC has the best thermal insulation at medium-high temperatures. And the 3D printed aerogel doped with 10 wt% SiC has a compression performance of 1.19 MPa, which is more than 10 times better than the usual aerogel. This paper provides a method for creating micro-objects and complex-shaped objects with excellent medium-high tem-perature thermal insulation using Direct Ink Writing (DIW).
引用
收藏
页数:8
相关论文
共 33 条
[1]  
Anderson A.M., 2011, AEROGELS HDB, P47
[2]   Foam 3D printing for construction: A review of applications, materials, and processes [J].
Bedarf, Patrick ;
Dutto, Alessandro ;
Zanini, Michele ;
Dillenburger, Benjamin .
AUTOMATION IN CONSTRUCTION, 2021, 130
[3]   3D printing of carbon-based materials: A review [J].
Blyweert, P. ;
Nicolas, V. ;
Fierro, V. ;
Celzard, A. .
CARBON, 2021, 183 :449-485
[4]   Topology Optimization Design and Experimental Research of a 3D-Printed Metal Aerospace Bracket Considering Fatigue Performance [J].
Chen, Yisheng ;
Wang, Qianglong ;
Wang, Chong ;
Gong, Peng ;
Shi, Yincheng ;
Yu, Yi ;
Liu, Zhenyu .
APPLIED SCIENCES-BASEL, 2021, 11 (15)
[5]   Hydrophobic silica aerogels by silylation [J].
Duan, Yannan ;
Jana, Sadhan C. ;
Lama, Bimala ;
Espe, Matthew P. .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2016, 437 :26-33
[6]   Cellulose nanofibril reinforced silica aerogels: optimization of the preparation process evaluated by a response surface methodology [J].
Fu, Jingjing ;
He, Chunxia ;
Huang, Jingda ;
Chen, Zhilin ;
Wang, Siqun .
RSC ADVANCES, 2016, 6 (102) :100326-100333
[7]   Rapid synthesis of ambient pressure dried tetraethoxysilane based silica aerogels [J].
Ganbavle, V. V. ;
Kalekar, A. S. ;
Harale, N. S. ;
Patil, S. S. ;
Dhere, S. L. .
JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY, 2021, 97 (01) :5-10
[8]   Thermal Protective Performance of Silica Aerogel Felt Bedded Firefighters' Protective Clothing under Fire Conditions [J].
Huang, Dongmei ;
Guo, Chenning .
MATERIALS SCIENCE-MEDZIAGOTYRA, 2017, 23 (04) :335-341
[9]  
Kaya GG, 2020, J IND ENG CHEM, V89, P13
[10]   Fabrication of silica aerogel composite blankets from an aqueous silica aerogel slurry [J].
Lee, Kyoung-Jin ;
Choe, Yeong-Ju ;
Kim, Young Hun ;
Lee, Je Kyun ;
Hwang, Hae-Jin .
CERAMICS INTERNATIONAL, 2018, 44 (02) :2204-2208