Evaporation of Suspended Nanofluid (SiO2/Water) Droplets: Experimental Results and Modelling

被引:0
作者
Starinskaya, E. M. [1 ]
Miskiv, N. B. [1 ]
Nazarov, A. D. [1 ]
Terekhov, V. V. [1 ]
Terekhov, V. I. [1 ]
Rybdylova, O. D. [2 ]
Sazhin, S. S. [1 ,2 ]
机构
[1] Kutateladze Inst Thermophys, Novosibirsk 630090, Russia
[2] Univ Brighton, Adv Engn Ctr, Sch Architecture Technol & Engn, Brighton BN2 4GJ, England
关键词
Droplets; Evaporation; Nanoparticles; Silicon dioxide; Supporting thread; HEAT-TRANSFER; WATER DROPLETS; MASS-TRANSFER; NANOPARTICLES; FUEL; DIFFUSION;
D O I
10.1007/s10765-023-03164-8
中图分类号
O414.1 [热力学];
学科分类号
摘要
The results of experimental studies and modelling of the evaporation of suspended water droplets containing silicon dioxide SiO2 nanoparticles at mass fractions 0.02 and 0.07 are presented. The experimental results are analysed using the previously developed model for multicomponent droplet heating and evaporation. In this model droplets are assumed to be spherical and the analytical solutions to the heat transfer and species diffusion equations are incorporated into the numerical code. They are used at each timestep of the calculations. Silicon dioxide nanoparticles are considered to be a non-evaporating component. It is demonstrated that both experimental and predicted values of droplet diameters to the power 1.5 decrease almost linearly with time, except at the beginning and the final stages of the evaporation process, and are only weakly affected by the presence of nanoparticles. At the final point in this process, the effect of nanoparticles becomes dominant when their mass fraction at the droplet surface reaches about 40 % and a cenosphere-like structure is formed. Both predicted and observed droplet surface temperatures rapidly decrease during the initial stage of droplet evaporation. After about t = 100 s the predicted surface temperature remains almost constant whilst its experimentally observed values increase with time. This might be related to a decrease in the temperature of ambient air in the vicinity of droplets, not taken into account in the model. Both observed and predicted values of the mass fraction of silicon dioxide at the droplet surfaces are shown to increase with time until they reach about 0.4.
引用
收藏
页数:20
相关论文
共 59 条
  • [1] DROPLET VAPORIZATION MODEL FOR SPRAY COMBUSTION CALCULATIONS
    ABRAMZON, B
    SIRIGNANO, WA
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1989, 32 (09) : 1605 - 1618
  • [2] [Anonymous], 2016, Modern Problems of Microand Nanofluidics
  • [3] Puffing/micro-explosion in composite fuel/water droplets heated in flames
    Antonov, D. V.
    Fedorenko, R. M.
    Strizhak, P. A.
    Nissar, Z.
    Sazhin, S. S.
    [J]. COMBUSTION AND FLAME, 2021, 233
  • [4] Potential applications of nanofluids for heat transfer
    Assael, Marc J.
    Antoniadis, Konstantinos D.
    Wakeham, William A.
    Zhang, Xing
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 138 : 597 - 607
  • [5] Bird RB., 2002, TRANSPORT PHENOMENA
  • [6] Bochkarev A.A., 2013, P CONFERENCEMODERN P, P66
  • [7] Determination of parameters of heat and mass transfer in evaporating drops
    Borodulin, V. Yu.
    Letushko, V. N.
    Nizovtsev, M. I.
    Sterlyagov, A. N.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 109 : 609 - 618
  • [8] Influence of relative humidity and nano-particle concentration on pattern formation and evaporation rate of pinned drying drops of nanofluids
    Brutin, D.
    [J]. COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2013, 429 : 112 - 120
  • [9] Chen P, 2018, MECH PHYSICSMED PH
  • [10] Surface tension of evaporating nanofluid droplets
    Chen, Ruey-Hung
    Phuoc, Tran X.
    Martello, Donald
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2011, 54 (11-12) : 2459 - 2466