On the local behavior of local weak solutions to some singular anisotropic elliptic equations

被引:20
|
作者
Ciani, Simone [1 ]
Skrypnik, Igor I. [2 ]
Vespri, Vincenzo [3 ]
机构
[1] Tech Univ Darmstadt, Dept Math, Schlossgartenstr 7, D-64289 Darmstadt, Germany
[2] Natl Acad Sci Ukraine, Inst Appl Math & Mech, Gen Batiouk Str 19, UA-84116 Sloviansk, Ukraine
[3] Univ Firenze, Dipartimento Matemat & Informat Ulisse Dini Viale, 67-a, I-50134 Florence, Italy
关键词
anisotropic p-Laplacian; singular parabolic equations; Holder continuity; intrinsic scaling; expansion of positivity; intrinsic Harnack inequality; NONNEGATIVE SOLUTIONS; PARABOLIC EQUATIONS; HOLDER CONTINUITY; BOUNDEDNESS; SOBOLEV; REGULARITY;
D O I
10.1515/anona-2022-0275
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the local behavior of bounded local weak solutions to a class of anisotropic singular equations of the kind Sigma(s)(i=1)partial derivative(ii)u Sigma(N)(i=1s+1)partial derivative(i)(A(i)(x, u, del u)) = 0, x is an element of Omega subset of subset of R-N for 1 <= s <= (N -1), where each operator A(i) behaves directionally as the singular p-Laplacian, 1 < p < 2. Throughout a parabolic approach to expansion of positivity we obtain the interior Holder continuity and some integral and pointwise Harnack inequalities.
引用
收藏
页码:237 / 265
页数:29
相关论文
共 50 条