A Convergent Numerical Algorithm for α-Dissipative Solutions of the Hunter-Saxton Equation

被引:0
作者
Christiansen, Thomas [1 ]
Grunert, Katrin [1 ]
Nordli, Anders [2 ]
Solem, Susanne [3 ]
机构
[1] NTNU Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
[2] UiT Arctic Univ Norway, Dept Automat & Proc Engn, Tromso, Norway
[3] NMBU Norwegian Univ Life Sci, Dept Math, NO-1432 As, Norway
关键词
Hunter-Saxton equation; Projection operator; Conservative solutions; Numerical method; Convergence; alpha-Dissipative solutions; GLOBAL CONSERVATIVE SOLUTIONS; CAMASSA-HOLM EQUATION; LIPSCHITZ STABILITY; INITIAL DATA; EXISTENCE;
D O I
10.1007/s10915-024-02479-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A convergent numerical method for alpha-dissipative solutions of the Hunter-Saxton equation is derived. The method is based on applying a tailor-made projection operator to the initial data, and then solving exactly using the generalized method of characteristics. The projection step is the only step that introduces any approximation error. It is therefore crucial that its design ensures not only a good approximation of the initial data, but also that errors due to the energy dissipation at later times remain small. Furthermore, it is shown that the main quantity of interest, the wave profile, converges in L-infinity for all t >= 0, while a subsequence of the energy density converges weakly for almost every time.
引用
收藏
页数:42
相关论文
共 32 条
  • [1] Beals R., 2001, APPL ANAL, V78, P255, DOI DOI 10.1080/00036810108840938
  • [2] Billingsley P., 1968, Convergence of Probability Measures
  • [3] Global solutions of the Hunter-Saxton equation
    Bressan, A
    Constantin, A
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (03) : 996 - 1026
  • [4] Lipschitz metric for the Hunter-Saxton equation
    Bressan, Alberto
    Holden, Helge
    Raynaud, Xavier
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2010, 94 (01): : 68 - 92
  • [5] Christiansen T., 2021, Traveling wave solutions for the hunter-saxton equation
  • [6] GENERALIZED CHARACTERISTICS AND THE HUNTER-SAXTON EQUATION
    Dafermos, Constantine M.
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2011, 8 (01) : 159 - 168
  • [7] Folland G.B., 1999, PURE APPL MATH
  • [8] Grasmair M., 2018, Springer Optim. Appl., V135, P157
  • [9] Grunert K, 2024, Arxiv, DOI arXiv:2302.07150
  • [10] Lipschitz stability for the Hunter-Saxton equation
    Grunert, Katrin
    Tandy, Matthew
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2022, 19 (02) : 275 - 310