Advances in Machine Learning Processing of Big Data from Disease Diagnosis Sensors

被引:14
作者
Lu, Shasha [1 ]
Yang, Jianyu [1 ]
Gu, Yu [1 ]
He, Dongyuan [1 ]
Wu, Haocheng [1 ]
Sun, Wei [2 ]
Xu, Dong [3 ]
Li, Changming [1 ]
Guo, Chunxian [1 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Mat Sci & Engn, Suzhou 215011, Peoples R China
[2] Hainan Normal Univ, Coll Chem & Chem Engn, Haikou 571158, Peoples R China
[3] Chinese Acad Sci, Zhejiang Canc Hosp, Hangzhou Inst Med HIM, Dept Diagnost Ultrasound Imaging & Intervent Thera, Hangzhou 310022, Peoples R China
基金
中国国家自然科学基金;
关键词
biomarker; big data; machine learning; data mining; bioinformatics; artificial intelligence; molecular computing; modular workflow; diseasediagnosis sensor; BREAST-CANCER; ARTIFICIAL-INTELLIGENCE; PROSTATE-CANCER; T-SNE; DISCRIMINANT-ANALYSIS; MASS-SPECTROMETRY; RNA-SEQ; CLASSIFICATION; IDENTIFICATION; TRANSLATION;
D O I
10.1021/acssensors.3c02670
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Exploring accurate, noninvasive, and inexpensive disease diagnostic sensors is a critical task in the fields of chemistry, biology, and medicine. The complexity of biological systems and the explosive growth of biomarker data have driven machine learning to become a powerful tool for mining and processing big data from disease diagnosis sensors. With the development of bioinformatics and artificial intelligence (AI), machine learning models formed by data mining have been able to guide more sensitive and accurate molecular computing. This review presents an overview of big data collection approaches and fundamental machine learning algorithms and discusses recent advances in machine learning and molecular computational disease diagnostic sensors. More specifically, we highlight existing modular workflows and key opportunities and challenges for machine learning to achieve disease diagnosis through big data mining.
引用
收藏
页码:1134 / 1148
页数:15
相关论文
共 111 条
[1]   Data-driven identification of prognostic tumor subpopulations using spatially mapped t-SNE of mass spectrometry imaging data [J].
Abdelmoula, Walid M. ;
Balluff, Benjamin ;
Englert, Sonja ;
Dijkstra, Jouke ;
Reinders, Marcel J. T. ;
Walch, Axel ;
McDonnell, Liam A. ;
Lelieveldt, Boudewijn P. F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (43) :12244-12249
[2]   Effective Early Detection of Epileptic Seizures through EEG Signals Using Classification Algorithms Based on t-Distributed Stochastic Neighbor Embedding and K-Means [J].
Alalayah, Khaled M. M. ;
Senan, Ebrahim Mohammed ;
Atlam, Hany F. F. ;
Ahmed, Ibrahim Abdulrab ;
Shatnawi, Hamzeh Salameh Ahmad .
DIAGNOSTICS, 2023, 13 (11)
[3]   RNA-Seq of Tumor-Educated Platelets Enables Blood-Based Pan-Cancer, Multiclass, and Molecular Pathway Cancer Diagnostics [J].
Best, Myron G. ;
Sol, Nik ;
Kooi, Irsan ;
Tannous, Jihane ;
Westerman, Bart A. ;
Rustenburg, Francois ;
Schellen, Pepijn ;
Verschueren, Heleen ;
Post, Edward ;
Koster, Jan ;
Ylstra, Bauke ;
Ameziane, Najim ;
Dorsman, Josephine ;
Smit, Egbert F. ;
Verheul, Henk M. ;
Noske, David P. ;
Reijneveld, Jaap C. ;
Nilsson, R. Jonas A. ;
Tannous, Bakhos A. ;
Wesseling, Pieter ;
Wurdinger, Thomas .
CANCER CELL, 2015, 28 (05) :666-676
[4]   Entropy of mitochondrial DNA circulating in blood is associated with hepatocellular carcinoma [J].
Campo, David S. ;
Nayak, Vishal ;
Srinivasamoorthy, Ganesh ;
Khudyakov, Yury .
BMC MEDICAL GENOMICS, 2019, 12 (Suppl 4)
[5]  
Chang Liu, 2021, Arabian Journal of Geosciences, V14, DOI [10.1007/s12517-021-06909-7, 10.1007/s12517-021-06909-7]
[6]   Profiling of Exosomal Biomarkers for Accurate Cancer Identification: Combining DNA-PAINT with Machine- Learning-Based Classification [J].
Chen, Chen ;
Zong, Shenfei ;
Liu, Yun ;
Wang, Zhuyuan ;
Zhang, Yizhi ;
Chen, Baoan ;
Cui, Yiping .
SMALL, 2019, 15 (43)
[7]   Integration and interplay of machine learning and bioinformatics approach to identify genetic interaction related to ovarian cancer chemoresistance [J].
Chen, Kexin ;
Xu, Haoming ;
Lei, Yiming ;
Lio, Pietro ;
Li, Yuan ;
Guo, Hongyan ;
Moni, Mohammad Ali .
BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
[8]   DNA Framework-Supported Electrochemical Analysis of DNA Methylation for Prostate Cancers [J].
Chen, Shixing ;
Su, Jing ;
Zhao, Zhihan ;
Shao, Yuan ;
Dou, Yanzhi ;
Li, Fuwu ;
Deng, Wangping ;
Shi, Jiye ;
Li, Qian ;
Zuo, Xiaolei ;
Song, Shiping ;
Fan, Chunhai .
NANO LETTERS, 2020, 20 (10) :7028-7035
[9]   Identification of gas mixtures via sensor array combining with neural networks [J].
Chu, Jifeng ;
Li, Weijuan ;
Yang, Xu ;
Wu, Yue ;
Wang, Dawei ;
Yang, Aijun ;
Yuan, Huan ;
Wang, Xiaohua ;
Li, Yunjia ;
Rong, Mingzhe .
SENSORS AND ACTUATORS B-CHEMICAL, 2021, 329
[10]   Genome-wide cell-free DNA fragmentation in patients with cancer [J].
Cristiano, Stephen ;
Leal, Alessandro ;
Phallen, Jillian ;
Fiksel, Jacob ;
Adleff, Vilmos ;
Bruhm, Daniel C. ;
Jensen, Sarah Ostrup ;
Medina, Jamie E. ;
Hruban, Carolyn ;
White, James R. ;
Palsgrove, Doreen N. ;
Niknafs, Noushin ;
Anagnostou, Valsamo ;
Forde, Patrick ;
Naidoo, Jarushka ;
Marrone, Kristen ;
Brahmer, Julie ;
Woodward, Brian D. ;
Husain, Hatim ;
van Rooijen, Karlijn L. ;
Orntoft, Mai-Britt Worm ;
Madsen, Anders Husted ;
van de Velde, Cornelis J. H. ;
Verheij, Marcel ;
Cats, Annemieke ;
Punt, Cornelis J. A. ;
Vink, Geraldine R. ;
van Grieken, Nicole C. T. ;
Koopman, Miriam ;
Fijneman, Remond J. A. ;
Johansen, Julia S. ;
Nielsen, Hans Jorgen ;
Meijer, Gerrit A. ;
Andersen, Claus Lindbjerg ;
Scharpf, Robert B. ;
Velculescu, Victor E. .
NATURE, 2019, 570 (7761) :385-+