High-performance, stable buffer-layer-free La0.9Sr0.1Ga0.8Mg0.2O3 electrolyte-supported solid oxide cell with a nanostructured nickel-based hydrogen electrode

被引:11
|
作者
Qian, Jiaqi [1 ]
Lin, Changgen [1 ]
Chen, Zhiyi [1 ]
Huang, Jiongyuan [1 ]
Ai, Na [2 ]
Jiang, San Ping [3 ,4 ]
Zhou, Xiaoliang [5 ]
Wang, Xin [1 ]
Shao, Yanqun [1 ]
Chen, Kongfa [1 ]
机构
[1] Fuzhou Univ, Coll Mat Sci & Engn, Fuzhou 350108, Fujian, Peoples R China
[2] Fuzhou Univ, Fujian Coll Assoc Instrumental Anal Ctr, Fuzhou 350108, Fujian, Peoples R China
[3] Guangdong Lab, Foshan Xianhu Lab Adv Energy Sci & Technol, Foshan 528216, Guangdong, Peoples R China
[4] Curtin Univ, WA Sch Mines Minerals Energy & Chem Engn, Perth, WA 6102, Australia
[5] Southwest Petr Univ, Coll Chem & Chem Engn, Chengdu 610500, Peoples R China
来源
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY | 2024年 / 346卷
基金
中国国家自然科学基金;
关键词
Sintering; -free; Buffer; -layer; Nanostructure; Interface formation; Elemental interdiffusion; DOPED LAGAO3; FUEL-CELLS; ANODE; CATHODES; SR;
D O I
10.1016/j.apcatb.2024.123742
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
La0.9Sr0.1Ga0.8Mg0.2O3 (LSGM) with an extraordinary oxygen-ion conductivity has been extensively studied as an electrolyte material for intermediate temperature solid oxide cells (SOCs). However, the conventional hightemperature sintering process of electrodes results in detrimental reaction between LSGM and Ni-based hydrogen electrode and microstructural coarsening of the electrode. Herein, a buffer-layer-free LSGM electrolyte-supported single cell with a nanostructured Ni-Gd0.1Ce0.9O1.95 (GDC) electrode is developed using a sintering-free fabrication approach. The cell exhibits a peak power density of 1.23 W cm-2 at 800 degrees C and an electrolysis current density of 1.85 A cm-2 at 1.5 V with excellent operating stability. The good performance and durability is owing to the synergistic effects of the elimination of elemental interdiffusion at the electrode/ electrolyte interface, polarization induced in situ formation of hetero-interfaces between Ni-GDC and LSGM, and remarkable structural stability of Ni-GDC. This study provides an innovative means for the development of efficient and durable buffer-layer-free LSGM-supported SOCs.
引用
收藏
页数:7
相关论文
共 34 条
  • [11] High-performance anode-supported solid oxide fuel cells with co-fired Sm0.2Ce0.8O2-δ/ La0.8Sr0.2Ga0.8Mg0.2O3-δ/Sm0.2Ce0.8O2-δ sandwiched electrolyte
    Wang, Sea-Fue
    Lu, Hsi-Chuan
    Hsu, Yung-Fu
    Jasinski, Piotr
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (08) : 5429 - 5438
  • [12] Synthesis and characterization of La0.9Sr0.1Ga0.8Mg0.2O3-δ intermediate-temperature electrolyte using conventional solid state reaction
    Li, Minxia
    Zhang, Yaohui
    An, Maozhong
    Lu, Zhe
    Huang, Xiqiang
    Xiao, Juncheng
    Wei, Bo
    Zhu, Xingbao
    Su, Wenhui
    JOURNAL OF POWER SOURCES, 2012, 218 : 233 - 236
  • [13] Performance of La0.1Sr0.9Co0.8Fe0.2O3-δ and La0.1Sr0.9Co0.8Fe0.2O3-δ-Ce0.9Gd0.1O2 oxygen electrodes with Ce0.9Gd0.1O2 barrier layer in reversible solid oxide fuel cells
    Choi, Moon-Bong
    Singh, Bhupendra
    Wachsman, Eric D.
    Song, Sun-Ju
    JOURNAL OF POWER SOURCES, 2013, 239 : 361 - 373
  • [14] High performance anode-supported intermediate temperature solid oxide fuel cells (IT-SOFCs) with La0.8Sr0.2Ga0.8Mg0.2O3-δ electrolyte films prepared by electrophoretic deposition
    Bozza, Francesco
    Polini, Riccardo
    Traversa, Enrico
    ELECTROCHEMISTRY COMMUNICATIONS, 2009, 11 (08) : 1680 - 1683
  • [15] Characteristics of La0.8Sr0.2Ga0.8Mg0.2O3-δ-supported micro-tubular solid oxide fuel cells with bi-layer and tri-layer electrolytes
    Liu, Yi-Xin
    Wang, Sea-Fue
    Hsu, Yung-Fu
    Jasinski, Piotr
    JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2017, 125 (04) : 236 - 241
  • [16] Infiltrated Sr2Fe1.5Mo0.5O6/La0.9Sr0.1Ga0.8Mg0.2O3 electrodes towards high performance symmetrical solid oxide fuel cells fabricated by an ultra-fast and time-saving procedure
    Liu, Juan
    Lei, Yu
    Li, Yumei
    Gao, Jun
    Han, Da
    Zhan, Weiting
    Huang, Fuqiang
    Wang, Shaorong
    ELECTROCHEMISTRY COMMUNICATIONS, 2017, 78 : 6 - 10
  • [17] Application of high velocity oxygen fuel flame (HVOF) spraying to fabrication of La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte for solid oxide fuel cells
    Zhang, Shan-Lin
    Li, Cheng-Xin
    Li, Chang-Jiu
    Yang, Guan-Jun
    Liu, Meilin
    JOURNAL OF POWER SOURCES, 2016, 301 : 62 - 71
  • [18] Tape Casting of High-Performance Low-Temperature Solid Oxide Cells with Thin La0.8Sr0.2Ga0.8Mg0.2O3-δ Electrolytes and Impregnated Nano Anodes
    Gao, Zhan
    Wang, Hongqian
    Miller, Elizabeth
    Liu, Qinyuan
    Senn, Daniel
    Barnett, Scott
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (08) : 7115 - 7124
  • [19] Sr-free orthorhombic perovskite Pr0.8Ca0.2Fe0.8Co0.2O3-8 as a high-performance air electrode for reversible solid oxide cell
    Li, Yitong
    Tian, Yunfeng
    Li, Jin
    Pu, Jian
    Chi, Bo
    JOURNAL OF POWER SOURCES, 2022, 528
  • [20] Rapid synthesis of La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte by a CO2 laser and its electric properties for intermediate temperature solid state oxide full cells
    Zhang, J.
    Liang, E. J.
    Zhang, X. H.
    JOURNAL OF POWER SOURCES, 2010, 195 (19) : 6758 - 6763