Connectivity conservation planning through deep reinforcement learning

被引:0
作者
Equihua, Julian [1 ]
Beckmann, Michael [1 ]
Seppelt, Ralf [1 ,2 ,3 ]
机构
[1] UFZ Helmholtz Ctr Environm Res, Dept Computat Landscape Ecol, Leipzig, Germany
[2] Martin Luther Univ Halle Wittenberg, Inst Geosci & Geog, Halle An Der Saale, Germany
[3] German Ctr Integrat Biodivers Res iDiv, Leipzig, Germany
来源
METHODS IN ECOLOGY AND EVOLUTION | 2024年 / 15卷 / 04期
关键词
connectivity conservation planning; deep reinforcement learning; ecological restoration; machine learning; spatial optimisation; systematic conservation planning; HABITAT PATCHES; INDEXES; OPTIMIZATION; NETWORKS; LEVEL;
D O I
10.1111/2041-210X.14300
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The United Nations has declared 2021-2030 the decade on ecosystem restoration with the aim of preventing, stopping and reversing the degradation of the ecosystems of the world, often caused by the fragmentation of natural landscapes. Human activities separate and surround habitats, making them too small to sustain viable animal populations or too far apart to enable foraging and gene flow. Despite the need for strategies to solve fragmentation, it remains unclear how to efficiently reconnect nature. In this paper, we illustrate the potential of deep reinforcement learning (DRL) to tackle the spatial optimisation aspect of connectivity conservation planning. The propensity of spatial optimisation problems to explode in complexity depending on the number of input variables and their states is and will continue to be one of its most serious obstacles. DRL is an emerging class of methods focused on training deep neural networks to solve decision-making tasks and has been used to learn good heuristics for complex optimisation problems. While the potential of DRL to optimise conservation decisions seems huge, only few examples of its application exist. We applied DRL to two real-world raster datasets in a connectivity planning setting, targeting graph-based connectivity indices for optimisation. We show that DRL converges to the known optimums in a small example where the objective is the overall improvement of the Integral Index of Connectivity and the only constraint is the budget. We also show that DRL approximates high-quality solutions on a large example with additional cost and spatial configuration constraints where the more complex Probability of Connectivity Index is targeted. To the best of our knowledge, there is no software that can target this index for optimisation on raster data of this size. DRL can be used to approximate good solutions in complex spatial optimisation problems even when the conservation feature is non-linear like graph-based indices. Furthermore, our methodology decouples the optimisation process and the index calculation, so it can potentially target any other conservation feature implemented in current or future software. Las Naciones Unidas han declarado 2021-2030 la decada para la restauracion ecologica, con el objetivo de prevenir, detener e incluso revertir la degradacion de los ecosistemas del mundo. Esta alteracion es causada a menudo por la fragmentacion de los paisajes naturales. Las actividades humanas dividen y aislan los habitats, haciendolos demasiado pequenos para sustentar poblaciones animales viables o demasiado separados para permitir el forrajeo y el flujo genetico. A pesar de la necesidad de estrategias para resolver la fragmentacion, sigue sin ser claro como reconectar eficazmente a la naturaleza. En este articulo, ilustramos el potencial del Aprendizaje Profundo por Refuerzo (APR) para abordar el aspecto de optimizacion espacial en la planificacion de la conservacion de la conectividad. La propension de los problemas de optimizacion espacial a crecer exponencialmente en complejidad en funcion del numero de variables y sus estados es, y seguira siendo, uno de sus obstaculos mas serios. El APR es una clase de metodos para el entrenamiento de redes neuronales profundas con el fin de resolver tareas de toma de decisiones y se ha utilizado para disenar buenas heuristicas para problemas de optimizacion complejos. Si bien el potencial de el APR para optimizar las decisiones de conservacion parece enorme, actualmente solo existen unos pocos ejemplos de su aplicacion. En este estudio, aplicamos APR a dos rasteres de cobertura del suelo del mundo real en un entorno de planificacion de conectividad, apuntando a la optimizacion de indices de conectividad basados en grafos. Mostramos que APR converge a los optimos conocidos en un ejemplo pequeno donde el objetivo es la mejora del indice Integral de Conectividad y la unica restriccion es el presupuesto. Tambien, mostramos que APR se aproxima a soluciones de alta calidad en un ejemplo mayor, con restricciones adicionales de costos y de configuracion espacial y donde el objetivo es la mejora del indice de Probabilidad de Conectividad. Hasta donde sabemos, no existe ningun software que pueda optimizar este indice sobre datos raster del tamano que nosotros procesamos. El APR puede utilizarse para aproximar buenas soluciones en problemas complejos de optimizacion espacial, incluso cuando el objetivo de conservacion es no lineal, como lo son los indices basados en grafos. Ademas, nuestra metodologia desvincula el proceso de optimizacion y el calculo del indice, por lo que potencialmente puede incorporar cualquier otro objetivo de conservacion implementado en el software actual o futuro.
引用
收藏
页码:779 / 790
页数:12
相关论文
共 50 条
  • [41] Simultaneous task and energy planning using deep reinforcement learning
    Wang, Di
    Hu, Mengqi
    Weir, Jeffery D.
    [J]. INFORMATION SCIENCES, 2022, 607 : 931 - 946
  • [42] A decentralized path planning model based on deep reinforcement learning
    Guo, Dong
    Ji, Shouwen
    Yao, Yanke
    Chen, Cheng
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2024, 117
  • [43] Spatial planning of urban communities via deep reinforcement learning
    Zheng, Yu
    Lin, Yuming
    Zhao, Liang
    Wu, Tinghai
    Jin, Depeng
    Li, Yong
    [J]. NATURE COMPUTATIONAL SCIENCE, 2023, 3 (09): : 748 - +
  • [44] Dynamic Path Planning for Mobile Robots with Deep Reinforcement Learning
    Yang, Laiyi
    Bi, Jing
    Yuan, Haitao
    [J]. IFAC PAPERSONLINE, 2022, 55 (11): : 19 - 24
  • [45] GAN-Based Planning Model in Deep Reinforcement Learning
    Chen, Song
    Jiang, Junpeng
    Zhang, Xiaofang
    Wu, Jinjin
    Lu, Gongzheng
    [J]. ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT II, 2020, 12397 : 323 - 334
  • [46] A UAV Path Planning Method Based on Deep Reinforcement Learning
    Li, Yibing
    Zhang, Sitong
    Ye, Fang
    Jiang, Tao
    Li, Yingsong
    [J]. 2020 IEEE USNC-CNC-URSI NORTH AMERICAN RADIO SCIENCE MEETING (JOINT WITH AP-S SYMPOSIUM), 2020, : 93 - 94
  • [47] Research on path planning of robot based on deep reinforcement learning
    Liu, Feng
    Chen, Chang
    Li, Zhihua
    Guan, Zhi-Hong
    Wang, Hua O.
    [J]. PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE, 2020, : 3730 - 3734
  • [48] A Deep Reinforcement Learning Based Approach for AGVs Path Planning
    Guo, Xinde
    Ren, Zhigang
    Wu, Zongze
    Lai, Jialun
    Zeng, Deyu
    Xie, Shengli
    [J]. 2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 6833 - 6838
  • [49] Deep Reinforcement Learning for Indoor Mobile Robot Path Planning
    Gao, Junli
    Ye, Weijie
    Guo, Jing
    Li, Zhongjuan
    [J]. SENSORS, 2020, 20 (19) : 1 - 15
  • [50] Coevolutionary Deep Reinforcement Learning
    Cotton, David
    Traish, Jason
    Chaczko, Zenon
    [J]. 2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 2600 - 2607