Connectivity conservation planning through deep reinforcement learning

被引:0
|
作者
Equihua, Julian [1 ]
Beckmann, Michael [1 ]
Seppelt, Ralf [1 ,2 ,3 ]
机构
[1] UFZ Helmholtz Ctr Environm Res, Dept Computat Landscape Ecol, Leipzig, Germany
[2] Martin Luther Univ Halle Wittenberg, Inst Geosci & Geog, Halle An Der Saale, Germany
[3] German Ctr Integrat Biodivers Res iDiv, Leipzig, Germany
来源
METHODS IN ECOLOGY AND EVOLUTION | 2024年 / 15卷 / 04期
关键词
connectivity conservation planning; deep reinforcement learning; ecological restoration; machine learning; spatial optimisation; systematic conservation planning; HABITAT PATCHES; INDEXES; OPTIMIZATION; NETWORKS; LEVEL;
D O I
10.1111/2041-210X.14300
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The United Nations has declared 2021-2030 the decade on ecosystem restoration with the aim of preventing, stopping and reversing the degradation of the ecosystems of the world, often caused by the fragmentation of natural landscapes. Human activities separate and surround habitats, making them too small to sustain viable animal populations or too far apart to enable foraging and gene flow. Despite the need for strategies to solve fragmentation, it remains unclear how to efficiently reconnect nature. In this paper, we illustrate the potential of deep reinforcement learning (DRL) to tackle the spatial optimisation aspect of connectivity conservation planning. The propensity of spatial optimisation problems to explode in complexity depending on the number of input variables and their states is and will continue to be one of its most serious obstacles. DRL is an emerging class of methods focused on training deep neural networks to solve decision-making tasks and has been used to learn good heuristics for complex optimisation problems. While the potential of DRL to optimise conservation decisions seems huge, only few examples of its application exist. We applied DRL to two real-world raster datasets in a connectivity planning setting, targeting graph-based connectivity indices for optimisation. We show that DRL converges to the known optimums in a small example where the objective is the overall improvement of the Integral Index of Connectivity and the only constraint is the budget. We also show that DRL approximates high-quality solutions on a large example with additional cost and spatial configuration constraints where the more complex Probability of Connectivity Index is targeted. To the best of our knowledge, there is no software that can target this index for optimisation on raster data of this size. DRL can be used to approximate good solutions in complex spatial optimisation problems even when the conservation feature is non-linear like graph-based indices. Furthermore, our methodology decouples the optimisation process and the index calculation, so it can potentially target any other conservation feature implemented in current or future software. Las Naciones Unidas han declarado 2021-2030 la decada para la restauracion ecologica, con el objetivo de prevenir, detener e incluso revertir la degradacion de los ecosistemas del mundo. Esta alteracion es causada a menudo por la fragmentacion de los paisajes naturales. Las actividades humanas dividen y aislan los habitats, haciendolos demasiado pequenos para sustentar poblaciones animales viables o demasiado separados para permitir el forrajeo y el flujo genetico. A pesar de la necesidad de estrategias para resolver la fragmentacion, sigue sin ser claro como reconectar eficazmente a la naturaleza. En este articulo, ilustramos el potencial del Aprendizaje Profundo por Refuerzo (APR) para abordar el aspecto de optimizacion espacial en la planificacion de la conservacion de la conectividad. La propension de los problemas de optimizacion espacial a crecer exponencialmente en complejidad en funcion del numero de variables y sus estados es, y seguira siendo, uno de sus obstaculos mas serios. El APR es una clase de metodos para el entrenamiento de redes neuronales profundas con el fin de resolver tareas de toma de decisiones y se ha utilizado para disenar buenas heuristicas para problemas de optimizacion complejos. Si bien el potencial de el APR para optimizar las decisiones de conservacion parece enorme, actualmente solo existen unos pocos ejemplos de su aplicacion. En este estudio, aplicamos APR a dos rasteres de cobertura del suelo del mundo real en un entorno de planificacion de conectividad, apuntando a la optimizacion de indices de conectividad basados en grafos. Mostramos que APR converge a los optimos conocidos en un ejemplo pequeno donde el objetivo es la mejora del indice Integral de Conectividad y la unica restriccion es el presupuesto. Tambien, mostramos que APR se aproxima a soluciones de alta calidad en un ejemplo mayor, con restricciones adicionales de costos y de configuracion espacial y donde el objetivo es la mejora del indice de Probabilidad de Conectividad. Hasta donde sabemos, no existe ningun software que pueda optimizar este indice sobre datos raster del tamano que nosotros procesamos. El APR puede utilizarse para aproximar buenas soluciones en problemas complejos de optimizacion espacial, incluso cuando el objetivo de conservacion es no lineal, como lo son los indices basados en grafos. Ademas, nuestra metodologia desvincula el proceso de optimizacion y el calculo del indice, por lo que potencialmente puede incorporar cualquier otro objetivo de conservacion implementado en el software actual o futuro.
引用
收藏
页码:779 / 790
页数:12
相关论文
共 50 条
  • [21] From Reinforcement Learning to Deep Reinforcement Learning: An Overview
    Agostinelli, Forest
    Hocquet, Guillaume
    Singh, Sameer
    Baldi, Pierre
    BRAVERMAN READINGS IN MACHINE LEARNING: KEY IDEAS FROM INCEPTION TO CURRENT STATE, 2018, 11100 : 298 - 328
  • [22] Reinforcement learning applied to production planning and control
    Esteso, Ana
    Peidro, David
    Mula, Josefa
    Diaz-Madronero, Manuel
    INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2023, 61 (16) : 5772 - 5789
  • [23] Deep reinforcement learning for motion planning of mobile robots
    Sun H.-H.
    Hu C.-H.
    Zhang J.-G.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (06): : 1281 - 1292
  • [24] Learn to Steer through Deep Reinforcement Learning
    Wu, Keyu
    Esfahani, Mahdi Abolfazli
    Yuan, Shenghai
    Wang, Han
    SENSORS, 2018, 18 (11)
  • [25] A deep reinforcement learning approach incorporating genetic algorithm for missile path planning
    Xu, Shuangfei
    Bi, Wenhao
    Zhang, An
    Wang, Yunong
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (05) : 1795 - 1814
  • [26] Tackling Uncertainty in Online Multimodal Transportation Planning Using Deep Reinforcement Learning
    Farahani, Amirreza
    Genga, Laura
    Dijkman, Remco
    COMPUTATIONAL LOGISTICS (ICCL 2021), 2021, 13004 : 578 - 593
  • [27] Deep reinforcement learning of passenger behavior in multimodal journey planning with proportional fairness
    Kai-Fung Chu
    Weisi Guo
    Neural Computing and Applications, 2023, 35 : 20221 - 20240
  • [28] Average reward adjusted deep reinforcement learning for order release planning in manufacturing
    Schneckenreither, Manuel
    Haeussler, Stefan
    Peiro, Juanjo
    KNOWLEDGE-BASED SYSTEMS, 2022, 247
  • [29] Deep reinforcement learning applied to an assembly sequence planning problem with user preferences
    Neves, Miguel
    Neto, Pedro
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 122 (11-12) : 4235 - 4245
  • [30] Stratospheric airship trajectory planning in wind field using deep reinforcement learning
    Qi, Lele
    Yang, Xixiang
    Bai, Fangchao
    Deng, Xiaolong
    Pan, Yuelong
    ADVANCES IN SPACE RESEARCH, 2025, 75 (01) : 620 - 634