Genome-wide identification and expression analysis of the chlorophyll a/b binding protein gene family in oilseed (Brassica napus L.) under salt stress conditions

被引:6
|
作者
Xue, Tianyuan [1 ,2 ]
Wan, Heping [1 ,2 ]
Chen, Jingdong [1 ,2 ]
He, Sixiao [1 ,2 ]
Lujin, Chunzi [1 ,2 ]
Xia, Mang [1 ,2 ]
Wang, Shanshan [1 ,2 ]
Dai, Xigang [1 ,2 ]
Zeng, Changli [1 ,2 ]
机构
[1] Jianghan Univ, Coll Life Sci, Wuhan 430056, Peoples R China
[2] Engn Res Ctr Conservat Dev & Utilizat Characterist, Wuhan 430056, Peoples R China
来源
PLANT STRESS | 2024年 / 11卷
关键词
Brassica napus; Lhc gene family; Salt; Abiotic stress tolerance; ELECTRON-TRANSPORT; PHOTOSYSTEM-II; ABSCISIC-ACID; EVOLUTION; DEGRADATION; METABOLISM; TOLERANCE; SUBUNITS; ANTENNA; MAIZE;
D O I
10.1016/j.stress.2023.100339
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To elucidate the functions and molecular mechanisms of BnLhc gene family members in Brassica napus under different exogenous hormones and abiotic stress, we identified 57 BnLhc gene family members from the entire genome of B. napus variety ZS11 using Arabidopsis Lhc protein as a seed sequence combined with phyll A-B binding protein PF00504. We performed comprehensive analyses including physicochemical property analysis, structural analysis, phylogenetic relationship analysis, homology relationship analysis, protein interaction network analysis, microRNA-target gene interaction analysis and GO enrichment analysis. Additionally, based on transcriptome data, we investigated response patterns of BnLhc genes to various exogenous stress conditions. Comparative evaluation between non-salt (NS:0) and salt-treated (TS: 1) rapeseed plants revealed significant inhibition in leaf chlorophyll content, biomass (W), leaf area (LA), root surface area (RA), as well as chloroplasts and roots under salt treatment. Furthermore, qPCR was employed to assess the relative expression levels of BnLhc genes associated with salt tolerance. Our findings indicate that while BnLhcs were upregulated in leaves upon exposure to salt signals suggesting their potential involvement in enhancing rape's resistance to salt stress through ion redistribution processes; they were downregulated in roots. This study provides valuable insights into the functionality and molecular genetic mechanisms underlying the role BnLhc gene family
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Genome-Wide Identification and Characterization of the IGT Gene Family in Allotetraploid Rapeseed (Brassica napus L.)
    Sun, Chengming
    Zhang, Chun
    Wang, Xiadong
    Zhao, Xiaozhen
    Chen, Feng
    Zhang, Wei
    Hu, Maolong
    Fu, Sanxiong
    Yi, Bin
    Zhang, Jiefu
    DNA AND CELL BIOLOGY, 2021, 40 (03) : 441 - 456
  • [22] Comprehensive Identification and Expression Profiling of Epidermal Pattern Factor (EPF) Gene Family in Oilseed Rape (Brassica napus L.) under Salt Stress
    Wang, Shanshan
    Wang, Wei
    Chen, Jingdong
    Wan, Heping
    Zhao, Huixia
    Liu, Xiaoyun
    Dai, Xigang
    Zeng, Changli
    Xu, Danyun
    GENES, 2024, 15 (07)
  • [23] Genome-Wide Identification and Expression Profiling of Cytokinin Oxidase/Dehydrogenase (CKX) Genes Reveal Likely Roles in Pod Development and Stress Responses in Oilseed Rape (Brassica napus L.)
    Liu, Pu
    Zhang, Chao
    Ma, Jin-Qi
    Zhang, Li-Yuan
    Yang, Bo
    Tang, Xin-Yu
    Huang, Ling
    Zhou, Xin-Tong
    Lu, Kun
    Li, Jia-Na
    GENES, 2018, 9 (03):
  • [24] Genome-Wide Identification and Expression Analysis of the PUB Gene Family in Zoysia japonica under Salt Stress
    Sun, Daojin
    Xu, Jingya
    Wang, Haoran
    Guo, Hailin
    Chen, Yu
    Zhang, Ling
    Li, Jianjian
    Hao, Dongli
    Yao, Xiang
    Li, Xiaohui
    PLANTS-BASEL, 2024, 13 (06):
  • [25] Genome-wide identification and expression analysis of CaM/CML genes in Brassica napus under abiotic stress
    He, Xin
    Liu, Wei
    Li, Wenqian
    Liu, Yan
    Wang, Weiping
    Xie, Pan
    Kang, Yu
    Liao, Li
    Qian, Lunwen
    Liu, Zhongsong
    Guan, Chunyun
    Guan, Mei
    Hua, Wei
    JOURNAL OF PLANT PHYSIOLOGY, 2020, 255
  • [26] The Aldehyde Dehydrogenase Superfamily in Brassica napus L.: Genome-Wide Identification and Expression Analysis Under Low-Temperature Conditions
    Jin, Ting
    Wu, Chunhua
    Huang, Zhen
    Zhang, Xingguo
    Li, Shimeng
    Ding, Chao
    Long, Weihua
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (05)
  • [27] Genome-wide identification, phylogenetic, and expression analysis under abiotic stress conditions of Whirly (WHY) gene family in Medicago sativa L.
    Ruan, Qian
    Wang, Yizhen
    Xu, Haoyu
    Wang, Baoqiang
    Zhu, Xiaolin
    Wei, Bochuang
    Wei, Xiaohong
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [28] Genome-wide analysis of the auxin/indoleacetic acid (Aux/IAA) gene family in allotetraploid rapeseed (Brassica napus L.)
    Li, Haitao
    Wang, Bo
    Zhang, Qinghua
    Wang, Jing
    King, Graham J.
    Liu, Kede
    BMC PLANT BIOLOGY, 2017, 17
  • [29] Genome-Wide Identification of the CIPK Gene Family in Jasmine and Expression Analysis Under Salt Stress
    Zhang, Shuang
    Huang, Xin
    Yin, Lili
    Li, Jiawei
    Xu, Jiacan
    Wu, Ruigang
    HORTICULTURAE, 2025, 11 (01)
  • [30] Genome-Wide Analysis of the PYL Gene Family and Identification of PYL Genes That Respond to Abiotic Stress in Brassica napus
    Di, Feifei
    Jian, Hongju
    Wang, Tengyue
    Chen, Xueping
    Ding, Yiran
    Du, Hai
    Lu, Kun
    Li, Jiana
    Liu, Liezhao
    GENES, 2018, 9 (03)