Genome-wide identification and expression analysis of the chlorophyll a/b binding protein gene family in oilseed (Brassica napus L.) under salt stress conditions

被引:8
作者
Xue, Tianyuan [1 ,2 ]
Wan, Heping [1 ,2 ]
Chen, Jingdong [1 ,2 ]
He, Sixiao [1 ,2 ]
Lujin, Chunzi [1 ,2 ]
Xia, Mang [1 ,2 ]
Wang, Shanshan [1 ,2 ]
Dai, Xigang [1 ,2 ]
Zeng, Changli [1 ,2 ]
机构
[1] Jianghan Univ, Coll Life Sci, Wuhan 430056, Peoples R China
[2] Engn Res Ctr Conservat Dev & Utilizat Characterist, Wuhan 430056, Peoples R China
来源
PLANT STRESS | 2024年 / 11卷
关键词
Brassica napus; Lhc gene family; Salt; Abiotic stress tolerance; ELECTRON-TRANSPORT; PHOTOSYSTEM-II; ABSCISIC-ACID; EVOLUTION; DEGRADATION; METABOLISM; TOLERANCE; SUBUNITS; ANTENNA; MAIZE;
D O I
10.1016/j.stress.2023.100339
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To elucidate the functions and molecular mechanisms of BnLhc gene family members in Brassica napus under different exogenous hormones and abiotic stress, we identified 57 BnLhc gene family members from the entire genome of B. napus variety ZS11 using Arabidopsis Lhc protein as a seed sequence combined with phyll A-B binding protein PF00504. We performed comprehensive analyses including physicochemical property analysis, structural analysis, phylogenetic relationship analysis, homology relationship analysis, protein interaction network analysis, microRNA-target gene interaction analysis and GO enrichment analysis. Additionally, based on transcriptome data, we investigated response patterns of BnLhc genes to various exogenous stress conditions. Comparative evaluation between non-salt (NS:0) and salt-treated (TS: 1) rapeseed plants revealed significant inhibition in leaf chlorophyll content, biomass (W), leaf area (LA), root surface area (RA), as well as chloroplasts and roots under salt treatment. Furthermore, qPCR was employed to assess the relative expression levels of BnLhc genes associated with salt tolerance. Our findings indicate that while BnLhcs were upregulated in leaves upon exposure to salt signals suggesting their potential involvement in enhancing rape's resistance to salt stress through ion redistribution processes; they were downregulated in roots. This study provides valuable insights into the functionality and molecular genetic mechanisms underlying the role BnLhc gene family
引用
收藏
页数:16
相关论文
共 65 条
[41]   The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets [J].
Szklarczyk, Damian ;
Gable, Annika L. ;
Nastou, Katerina C. ;
Lyon, David ;
Kirsch, Rebecca ;
Pyysalo, Sampo ;
Doncheva, Nadezhda T. ;
Legeay, Marc ;
Fang, Tao ;
Bork, Peer ;
Jensen, Lars J. ;
von Mering, Christian .
NUCLEIC ACIDS RESEARCH, 2021, 49 (D1) :D605-D612
[42]  
Taghvaei MM., 2019, Crop Biotechnol., V9, P41, DOI DOI 10.30473/CB.2019.48213.1780
[43]   MEGA11 Molecular Evolutionary Genetics Analysis Version 11 [J].
Tamura, Koichiro ;
Stecher, Glen ;
Kumar, Sudhir .
MOLECULAR BIOLOGY AND EVOLUTION, 2021, 38 (07) :3022-3027
[44]   Differential changes in degradation of chlorophyll-protein complexes of photosystem I and photosystem II during flag leaf senescence of rice [J].
Tang, YL ;
Wen, XG ;
Lu, CM .
PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2005, 43 (02) :193-201
[45]   The Use of Genetic and Gene Technologies in Shaping Modern Rapeseed Cultivars (Brassica napus L.) [J].
Ton, Linh Bao ;
Neik, Ting Xiang ;
Batley, Jacqueline .
GENES, 2020, 11 (10) :1-22
[46]   Genome-wide analysis of the family of light-harvesting chlorophyll a/b-binding proteins in arabidopsis and rice [J].
Umate, Pavan .
PLANT SIGNALING & BEHAVIOR, 2010, 5 (12) :1537-1542
[47]   甘蓝型油菜对盐胁迫的响应及耐盐相关性状QTL研究进展 [J].
万何平 ;
戴希刚 ;
陈敬东 ;
戢强强 ;
曾长立 .
中国油料作物学报 , 2020, (04) :536-544
[48]   Connecting Chlorophyll Metabolism with Accumulation of the Photosynthetic Apparatus [J].
Wang, Peng ;
Grimm, Bernhard .
TRENDS IN PLANT SCIENCE, 2021, 26 (05) :484-495
[49]   MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity [J].
Wang, Yupeng ;
Tang, Haibao ;
DeBarry, Jeremy D. ;
Tan, Xu ;
Li, Jingping ;
Wang, Xiyin ;
Lee, Tae-ho ;
Jin, Huizhe ;
Marler, Barry ;
Guo, Hui ;
Kissinger, Jessica C. ;
Paterson, Andrew H. .
NUCLEIC ACIDS RESEARCH, 2012, 40 (07) :e49
[50]   SWISS-MODEL: homology modelling of protein structures and complexes [J].
Waterhouse, Andrew ;
Bertoni, Martino ;
Bienert, Stefan ;
Studer, Gabriel ;
Tauriello, Gerardo ;
Gumienny, Rafal ;
Heer, Florian T. ;
de Beer, Tjaart A. P. ;
Rempfer, Christine ;
Bordoli, Lorenza ;
Lepore, Rosalba ;
Schwede, Torsten .
NUCLEIC ACIDS RESEARCH, 2018, 46 (W1) :W296-W303