Genome-wide identification and expression analysis of the chlorophyll a/b binding protein gene family in oilseed (Brassica napus L.) under salt stress conditions

被引:6
|
作者
Xue, Tianyuan [1 ,2 ]
Wan, Heping [1 ,2 ]
Chen, Jingdong [1 ,2 ]
He, Sixiao [1 ,2 ]
Lujin, Chunzi [1 ,2 ]
Xia, Mang [1 ,2 ]
Wang, Shanshan [1 ,2 ]
Dai, Xigang [1 ,2 ]
Zeng, Changli [1 ,2 ]
机构
[1] Jianghan Univ, Coll Life Sci, Wuhan 430056, Peoples R China
[2] Engn Res Ctr Conservat Dev & Utilizat Characterist, Wuhan 430056, Peoples R China
来源
PLANT STRESS | 2024年 / 11卷
关键词
Brassica napus; Lhc gene family; Salt; Abiotic stress tolerance; ELECTRON-TRANSPORT; PHOTOSYSTEM-II; ABSCISIC-ACID; EVOLUTION; DEGRADATION; METABOLISM; TOLERANCE; SUBUNITS; ANTENNA; MAIZE;
D O I
10.1016/j.stress.2023.100339
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To elucidate the functions and molecular mechanisms of BnLhc gene family members in Brassica napus under different exogenous hormones and abiotic stress, we identified 57 BnLhc gene family members from the entire genome of B. napus variety ZS11 using Arabidopsis Lhc protein as a seed sequence combined with phyll A-B binding protein PF00504. We performed comprehensive analyses including physicochemical property analysis, structural analysis, phylogenetic relationship analysis, homology relationship analysis, protein interaction network analysis, microRNA-target gene interaction analysis and GO enrichment analysis. Additionally, based on transcriptome data, we investigated response patterns of BnLhc genes to various exogenous stress conditions. Comparative evaluation between non-salt (NS:0) and salt-treated (TS: 1) rapeseed plants revealed significant inhibition in leaf chlorophyll content, biomass (W), leaf area (LA), root surface area (RA), as well as chloroplasts and roots under salt treatment. Furthermore, qPCR was employed to assess the relative expression levels of BnLhc genes associated with salt tolerance. Our findings indicate that while BnLhcs were upregulated in leaves upon exposure to salt signals suggesting their potential involvement in enhancing rape's resistance to salt stress through ion redistribution processes; they were downregulated in roots. This study provides valuable insights into the functionality and molecular genetic mechanisms underlying the role BnLhc gene family
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Genome-wide analysis and expression profiling of the GRF gene family in oilseed rape (Brassica napus L.)
    Ma, Jin-Qi
    Jian, Hong-Ju
    Yang, Bo
    Lu, Kun
    Zhang, Ao-Xiang
    Liu, Pu
    Li, Jia-Na
    GENE, 2017, 620 : 36 - 45
  • [2] Genome-Wide Identification of the LAC Gene Family and Its Expression Analysis Under Stress in Brassica napus
    Ping, Xiaoke
    Wang, Tengyue
    Lin, Na
    Di, Feifei
    Li, Yangyang
    Jian, Hongju
    Wang, Hao
    Lu, Kun
    Li, Jiana
    Xu, Xinfu
    Liu, Liezhao
    MOLECULES, 2019, 24 (10):
  • [3] Genome-wide identification, evolution, and expression analysis of HVA22 gene family in Brassica napus L.
    Wang, Ping
    Wang, Lirong
    GENETIC RESOURCES AND CROP EVOLUTION, 2025,
  • [4] Genome-Wide Identification and Evolutionary and Expression Analyses of the Cyclin B Gene Family in Brassica napus
    Li, Mingyue
    Zhang, Minghao
    Meng, Boyu
    Miao, Likai
    Fan, Yonghai
    PLANTS-BASEL, 2024, 13 (12):
  • [5] The CDPK Gene Family in Mustard (Brassica juncea L.): Genome-Wide Identification and Expression Analysis under Cold Stress
    Li, Haibo
    Wu, Hao
    Huang, Weifeng
    Liu, Jiaxian
    Deng, Jiaxin
    Li, Chuanhong
    Mao, Cui
    Zhang, Yang
    Wang, Yukun
    Zheng, Jie
    HORTICULTURAE, 2024, 10 (01)
  • [6] Genome-Wide Identification of NDPK Family Genes and Expression Analysis under Abiotic Stress in Brassica napus
    Wang, Long
    Zhao, Zhi
    Li, Huaxin
    Pei, Damei
    Huang, Zhen
    Wang, Hongyan
    Xiao, Lu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (12)
  • [7] Genome-wide analysis and expression profiling of the HMA gene family in Brassica napus under cd stress
    Li, Nannan
    Xiao, Hua
    Sun, Juanjuan
    Wang, Shufeng
    Wang, Jingchao
    Chang, Peng
    Zhou, Xinbin
    Lei, Bo
    Lu, Kun
    Luo, Feng
    Shi, Xiaojun
    Li, Jiana
    PLANT AND SOIL, 2018, 426 (1-2) : 365 - 381
  • [8] Genome-wide identification and expression analysis of TPP gene family under salt stress in peanut (Arachis hypogaea L.)
    Zhang, Yanfeng
    Cao, Minxuan
    Li, Qiuzhi
    Yu, Fagang
    PLOS ONE, 2024, 19 (07):
  • [9] Identification and Expression Analysis of the Isopentenyl Transferase (IPT) Gene Family under Lack of Nitrogen Stress in Oilseed (Brassica napus L.)
    Chen, Jingdong
    Wan, Heping
    Zhu, Wenhui
    Dai, Xigang
    Yu, Yi
    Zeng, Changli
    PLANTS-BASEL, 2023, 12 (11):
  • [10] Identification and expression analysis of the Xyloglucan transglycosylase/hydrolase (XTH) gene family under abiotic stress in oilseed (Brassica napus L.)
    Chen, Jingdong
    Wan, Heping
    Zhao, Huixia
    Dai, Xigang
    Wu, Wanjin
    Liu, Jin
    Xu, Jinsong
    Yang, Rui
    Xu, Benbo
    Zeng, Changli
    Zhang, Xuekun
    BMC PLANT BIOLOGY, 2024, 24 (01):