Electrochemical Deposition of Copper on Bioactive Porous Titanium Dioxide Layer: Antibacterial and Pro-Osteogenic Activities

被引:6
作者
Aoki, Shun [1 ,2 ]
Shimabukuro, Masaya [6 ]
Kishida, Ryo [3 ]
Kyuno, Kentaro [1 ,4 ,5 ]
Noda, Kazuhiko [1 ]
Yokoi, Taishi [6 ]
Kawashita, Masakazu [6 ]
机构
[1] Shibaura Inst Technol, Dept Mat Sci & Engn, Tokyo 1358548, Japan
[2] Tokyo Med & Dent Univ, Grad Sch Med & Dent Sci, Tokyo 1138549, Japan
[3] Kyushu Univ, Fac Dent Sci, Fukuoka 8128582, Japan
[4] Shibaura Inst Technol, Grad Sch Engn & Sci, Tokyo 1358548, Japan
[5] Shibaura Inst Technol, Int Res Ctr Green Elect, Tokyo 1358548, Japan
[6] Tokyo Med & Dent Univ, Inst Biomat & Bioengn, Tokyo 1010062, Japan
关键词
plasma electrolytic oxidation; anodic spark deposition; plating; surface modification; infection prevention; IN-VITRO; SURFACE; OXIDATION; CYTOTOXICITY; ABILITY; TI;
D O I
10.1021/acsabm.3c00860
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Ti surfaces must exhibit antibacterial activity without cytotoxicity to promote bone reconstruction and prevent infection simultaneously. In this study, we employed a two-step electrochemical treatment process, namely, microarc oxidation (MAO) and cathodic electrochemical deposition (CED), to modify Ti surfaces. During the MAO step, a porous TiO2 (pTiO(2)) layer with a surface roughness of approximately 2.0 mu m was generated on the Ti surface, and in the CED step, Cu was deposited onto the pTiO(2) layer on the Ti surface, forming Cu@pTiO(2). Cu@pTiO(2) exhibited a similar structure, adhesion strength, and crystal phase to pTiO(2). Moreover, X-ray photoelectron spectroscopy (XPS) confirmed the presence of Cu in Cu@pTiO(2) at an approximate concentration of 1.0 atom %. Cu@pTiO(2) demonstrated a sustained release of Cu ions for a minimum of 28 days in a simulated in vivo environment. In vitro experiments revealed that Cu@pTiO(2) effectively eradicated approximately 99% of Staphylococcus aureus and Escherichia coli and inhibited biofilm formation, in contrast to the Ti and pTiO(2) surfaces. Moreover, Cu@pTiO(2) supported the proliferation of osteoblast-like cells at a rate comparable to that observed on the Ti and pTiO(2) surfaces. Similar to pTiO(2), Cu@pTiO(2) promoted the calcification of osteoblast-like cells compared with Ti. In summary, we successfully conferred antibacterial and pro-osteogenic activities to Ti surfaces without inducing cytotoxic effects or structural and mechanical alterations in pTiO(2) through the application of MAO and CED processes. Moreover, we found that the pTiO(2) layer promoted bacterial growth and biofilm formation more effectively than the Ti surface, highlighting the potential drawbacks of rough and porous surfaces. Our findings provide fundamental insights into the surface design of Ti-based medical devices for bone reconstruction and infection prevention.
引用
收藏
页码:5759 / 5767
页数:9
相关论文
共 45 条
  • [1] In vivo study of the initial bacterial adhesion on different implant materials
    Al-Ahmad, A.
    Wiedmann-Al-Ahmad, M.
    Fackler, A.
    Follo, M.
    Hellwig, E.
    Baechle, M.
    Hannig, C.
    Han, J. -S.
    Wolkewitz, M.
    Kohal, R.
    [J]. ARCHIVES OF ORAL BIOLOGY, 2013, 58 (09) : 1139 - 1147
  • [2] Control of Biofilm Formation: Antibiotics and Beyond
    Algburi, Ammar
    Comito, Nicole
    Kashtanov, Dimitri
    Dicks, Leon M. T.
    Chikindas, Michael L.
    [J]. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2017, 83 (03)
  • [3] Bacterial adhesion to direct laser metal formed and mildly acid etched implant surfaces
    Annunziata, M.
    Rizzo, A.
    Leone, C.
    Mangano, C.
    Mazzola, N.
    Nastri, L.
    Papale, F.
    Rullo, F.
    Guida, L.
    [J]. SURFACE & COATINGS TECHNOLOGY, 2017, 328 : 390 - 397
  • [4] Bahari A, 2023, INT J NANO DIMENS, V14, P138
  • [5] Biofilm formation on polyetheretherketone and titanium surfaces
    Barkarmo, Sargon
    Longhorn, Daniel
    Leer, Kiran
    Johansson, Carina B.
    Stenport, Victoria
    Franco-Tabares, Sebastian
    Kuehne, Sarah A.
    Sammons, Rachel
    [J]. CLINICAL AND EXPERIMENTAL DENTAL RESEARCH, 2019, 5 (04): : 427 - 437
  • [6] Staphylococcal biofilm growth on smooth and porous titanium coatings for biomedical applications
    Braem, Annabel
    Van Mellaert, Lieve
    Mattheys, Tina
    Hofmans, Dorien
    De Waelheyns, Evelien
    Geris, Liesbet
    Anne, Jozef
    Schrooten, Jan
    Vleugels, Jef
    [J]. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2014, 102 (01) : 215 - 224
  • [7] Review of titanium surface modification techniques and coatings for antibacterial applications
    Chouirfa, H.
    Bouloussa, H.
    Migonney, V.
    Falentin-Daudre, C.
    [J]. ACTA BIOMATERIALIA, 2019, 83 : 37 - 54
  • [8] The effect of different surface topographies of titanium implants on bacterial biofilm: a systematic review
    Dhaliwal, Jagjit Singh
    Rahman, Nurul Adhwa
    Knights, Joe
    Ghani, Hazim
    de Albuquerque Junior, Rubens Ferreira
    [J]. SN APPLIED SCIENCES, 2019, 1 (06):
  • [9] Sandblasted/Acid-Etched Titanium Surface Modified with Calcium Phytate Enhances Bone Regeneration in a High-Glucose Microenvironment by Regulating Reactive Oxygen Species and Cell Senescence
    Dong, Shuo
    Zhao, Tong
    Wu, Wei
    Zhang, Zhewei
    Wu, Jin
    Cai, Kunzhan
    Li, Guoqing
    Lv, Jiaxin
    Zhou, Heyang
    Tang, Chunbo
    [J]. ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 9 (08) : 4720 - 4734
  • [10] Effects of Micro-Arc Oxidation Process Parameters on Characteristics of Calcium-Phosphate Containing Oxide Layers on the Selective Laser Melted Ti13Zr13Nb Alloy
    Dziaduszewska, Magda
    Shimabukuro, Masaya
    Seramak, Tomasz
    Zielinski, Andrzej
    Hanawa, Takao
    [J]. COATINGS, 2020, 10 (08)