Enhancement of Interfacial Properties by Indoloquinoxaline-Based Small Molecules for Highly Efficient Wide-Bandgap Perovskite Solar Cells

被引:9
作者
Yong, Jihye [1 ,2 ]
Lee, Yu Kyung [3 ]
Park, Hansol [1 ,2 ]
Muthu, Senthilkumar [1 ,2 ]
Shin, Juhwan [1 ,2 ]
Whang, Dong Ryeol [4 ]
Kim, Bong-Gi [5 ]
Chang, Dong Wook [3 ]
Park, Hui Joon [1 ,2 ]
机构
[1] Hanyang Univ, Dept Organ & Nano Engn, Seoul 04763, South Korea
[2] Hanyang Univ, Human Tech Convergence Program, Seoul 04763, South Korea
[3] Pukyong Natl Univ, Dept Ind Chem, Busan 48513, South Korea
[4] Hannam Univ, Div Adv Mat, Daejeon 34054, South Korea
[5] Konkuk Univ, Dept Organ & Nano Syst Engn, Seoul 05029, South Korea
基金
新加坡国家研究基金会;
关键词
defect-passivation; interlayer; organic hole transport material; perovskite solar cell; wide-bandgap; HALIDE PEROVSKITES; SENSITIZERS; DERIVATIVES; HYSTERESIS; STABILITY; OXIDE;
D O I
10.1002/adfm.202312505
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Interfacial engineering in organic-inorganic hybrid perovskite solar cells (PSCs) has attracted significant attention, aiming to achieve high-performing and highly stable devices. Here, newly designed organic small molecules based on quinoxaline and triphenylamine for inverted type wide-bandgap PSCs are introduced, with the objective of enhancing the interfacial properties between perovskite and NiOx hole transport layer (HTL). The incorporation of an organic interlayer effectively reduces the energy level offset between the HTL and wide-bandgap perovskite, while passivating defects within the perovskite layer. It leads to improved charge extraction and minimized non-radiative recombination at the interface. Furthermore, the enhanced interfacial characteristics and hydrophobicity contribute to the improvement of perovskite film quality, resulting in larger grain size and higher crystallinity. As a result, the power conversion efficiency (PCE) of the PSC is enhanced from 18.9% to 20.1% with the incorporation of the IQTPAFlu interlayer, accompanied by an increase in Voc to approximate to 1.3 V, achieving a significantly low Voc deficit of 0.46 V. And the IQTPAFlu-based devices demonstrate stable and consistent performance over 500 h, with approximate to 91% of their initial PCE retained. The highly stable wide-bandgap PSCs, characterized by high Voc and PCEs, hold great promise as potential candidates for tandem solar cells. Quinoxaline and triphenylamine-based organic small molecules are designed to enhance the interfacial properties between the perovskite and the NiOx hole transport layer in inverted-type wide-bandgap perovskite solar cells (PSCs). The integration of these organic interlayers effectively mitigates the energy level offset, passivates defects, and enhances the quality of the perovskite film. This improvement results in an outstanding efficiency of 20.1% for a 1.75 eV wide-bandgap PSC.image
引用
收藏
页数:13
相关论文
共 50 条
[31]   Surface reconstruction of wide-bandgap perovskites enables efficient perovskite/silicon tandem solar cells [J].
Fang, Zheng ;
Deng, Bingru ;
Jin, Yongbin ;
Yang, Liu ;
Chen, Lisha ;
Zhong, Yawen ;
Feng, Huiping ;
Yin, Yue ;
Liu, Kaikai ;
Li, Yingji ;
Zhang, Jinyan ;
Huang, Jiarong ;
Zeng, Qinghua ;
Wang, Hao ;
Yang, Xing ;
Yang, Jinxin ;
Tian, Chengbo ;
Xie, Liqiang ;
Wei, Zhanhua ;
Xu, Xipeng .
NATURE COMMUNICATIONS, 2024, 15 (01)
[32]   Inorganic CsPb1-xSnxIBr2 for Efficient Wide-Bandgap Perovskite Solar Cells [J].
Li, Nan ;
Zhu, Zonglong ;
Li, Jiangwei ;
Jen, Alex K. -Y. ;
Wang, Liduo .
ADVANCED ENERGY MATERIALS, 2018, 8 (22)
[33]   Efficient wide-bandgap perovskite solar cells enabled by doping a bromine-rich molecule [J].
He, Rui ;
Chen, Tingting ;
Xuan, Zhipeng ;
Guo, Tianzhen ;
Luo, Jincheng ;
Jiang, Yiting ;
Wang, Wenwu ;
Zhang, Jingquan ;
Hao, Xia ;
Wu, Lili ;
Wang, Ye ;
Constantinou, Iordania ;
Ren, Shengqiang ;
Zhao, Dewei .
NANOPHOTONICS, 2021, 10 (08) :2059-2068
[34]   Composition design of fullerene-based hybrid electron transport layer for efficient and stable wide-bandgap perovskite solar cells [J].
Zeng, Shuai ;
Zhou, Jinpeng ;
Sun, Yuandong ;
Sun, Wei ;
Yang, Liyan ;
Wang, Hui ;
Li, Xiangyang ;
Guo, Hailin ;
Dong, Linfeng ;
Guo, Chuanhang ;
Chen, Zhenghong ;
Li, Wei ;
Liu, Dan ;
Wang, Tao .
JOURNAL OF ENERGY CHEMISTRY, 2025, 102 :172-178
[35]   Interface Regulation by an Ultrathin Wide-Bandgap Halide for Stable and Efficient Inverted Perovskite Solar Cells [J].
Sun, Qing ;
Zong, Beibei ;
Meng, Xiangxin ;
Shen, Bo ;
Li, Xu ;
Kang, Bonan ;
Silva, S. Ravi P. .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (05) :6702-6713
[36]   Fluorinated Pyrimidine Bridged Buried Interface for Stable and Efficient Wide-Bandgap Perovskite Solar Cells [J].
Zhu, Yong ;
Xie, Zhewen ;
Chang, Xiong ;
Wang, Guohua ;
Hong, Zhanghua ;
Zhou, Mengni ;
Li, Kunpeng ;
Li, Zhishan ;
Wang, Hua ;
Zhu, Xing ;
Zhu, Tao .
ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (11)
[37]   Crystallization Regulation and Defect Passivation for Efficient Inverted Wide-Bandgap Perovskite Solar Cells with over 21% Efficiency [J].
Su, Gangfeng ;
Yu, Runnan ;
Dong, Yiman ;
He, Zhangwei ;
Zhang, Yuling ;
Wang, Ruyue ;
Dang, Qi ;
Sha, Shihao ;
Lv, Qianglong ;
Xu, Zhiyang ;
Liu, Zhuoxu ;
Li, Minghua ;
Tan, Zhan'ao .
ADVANCED ENERGY MATERIALS, 2024, 14 (04)
[38]   Enhancing Photovoltaically Preferred Orientation in Wide-Bandgap Perovskite for Efficient All-Perovskite Tandem Solar Cells [J].
Wu, Zhanghao ;
Zhao, Yue ;
Wang, Changlei ;
Ma, Tianshu ;
Chen, Chen ;
Liu, Yuhui ;
Jia, Tianci ;
Zhai, Yuhang ;
Chen, Cong ;
Zhang, Cheng ;
Cao, Guogyang ;
Yang, Zhenhai ;
Zhao, Dewei ;
Li, Xiaofeng .
ADVANCED MATERIALS, 2025, 37 (08)
[39]   Delaying crystallization and anchoring the grain boundaries defects via π-π stacked molecules for efficient and stable wide-bandgap perovskite solar cells [J].
Shen, Jinliang ;
Li, Na ;
Wang, Yuhang ;
Ge, Xiang ;
Tao, Junlei ;
Yin, Song ;
Ning, Xingkun ;
He, Tingwei ;
Fu, Guangsheng ;
Yang, Shaopeng .
CHEMICAL ENGINEERING JOURNAL, 2024, 489
[40]   Advances in Single-Halogen Wide-Bandgap Perovskite Solar Cells [J].
Nie, Ting ;
Jia, Lingbo ;
Feng, Jiangshan ;
Yang, Shangfeng ;
Ding, Jianning ;
Liu, Shengzhong ;
Fang, Zhimin .
ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (09)