Enhancement of Interfacial Properties by Indoloquinoxaline-Based Small Molecules for Highly Efficient Wide-Bandgap Perovskite Solar Cells

被引:9
作者
Yong, Jihye [1 ,2 ]
Lee, Yu Kyung [3 ]
Park, Hansol [1 ,2 ]
Muthu, Senthilkumar [1 ,2 ]
Shin, Juhwan [1 ,2 ]
Whang, Dong Ryeol [4 ]
Kim, Bong-Gi [5 ]
Chang, Dong Wook [3 ]
Park, Hui Joon [1 ,2 ]
机构
[1] Hanyang Univ, Dept Organ & Nano Engn, Seoul 04763, South Korea
[2] Hanyang Univ, Human Tech Convergence Program, Seoul 04763, South Korea
[3] Pukyong Natl Univ, Dept Ind Chem, Busan 48513, South Korea
[4] Hannam Univ, Div Adv Mat, Daejeon 34054, South Korea
[5] Konkuk Univ, Dept Organ & Nano Syst Engn, Seoul 05029, South Korea
基金
新加坡国家研究基金会;
关键词
defect-passivation; interlayer; organic hole transport material; perovskite solar cell; wide-bandgap; HALIDE PEROVSKITES; SENSITIZERS; DERIVATIVES; HYSTERESIS; STABILITY; OXIDE;
D O I
10.1002/adfm.202312505
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Interfacial engineering in organic-inorganic hybrid perovskite solar cells (PSCs) has attracted significant attention, aiming to achieve high-performing and highly stable devices. Here, newly designed organic small molecules based on quinoxaline and triphenylamine for inverted type wide-bandgap PSCs are introduced, with the objective of enhancing the interfacial properties between perovskite and NiOx hole transport layer (HTL). The incorporation of an organic interlayer effectively reduces the energy level offset between the HTL and wide-bandgap perovskite, while passivating defects within the perovskite layer. It leads to improved charge extraction and minimized non-radiative recombination at the interface. Furthermore, the enhanced interfacial characteristics and hydrophobicity contribute to the improvement of perovskite film quality, resulting in larger grain size and higher crystallinity. As a result, the power conversion efficiency (PCE) of the PSC is enhanced from 18.9% to 20.1% with the incorporation of the IQTPAFlu interlayer, accompanied by an increase in Voc to approximate to 1.3 V, achieving a significantly low Voc deficit of 0.46 V. And the IQTPAFlu-based devices demonstrate stable and consistent performance over 500 h, with approximate to 91% of their initial PCE retained. The highly stable wide-bandgap PSCs, characterized by high Voc and PCEs, hold great promise as potential candidates for tandem solar cells. Quinoxaline and triphenylamine-based organic small molecules are designed to enhance the interfacial properties between the perovskite and the NiOx hole transport layer in inverted-type wide-bandgap perovskite solar cells (PSCs). The integration of these organic interlayers effectively mitigates the energy level offset, passivates defects, and enhances the quality of the perovskite film. This improvement results in an outstanding efficiency of 20.1% for a 1.75 eV wide-bandgap PSC.image
引用
收藏
页数:13
相关论文
共 50 条
[21]   Understanding of chlorine incorporation in wide-bandgap perovskites for efficient and stable solar cells [J].
Zhao, Xiaoni ;
Yang, Haoran ;
Cheng, Yuanhang ;
Liu, Shengzhong ;
Fang, Zhimin .
NANO RESEARCH ENERGY, 2025,
[22]   Stable wide-bandgap perovskite solar cells for tandem applications [J].
Cheng, Zhendong ;
Zhang, Meng ;
Zhang, Yan ;
Qi, Wenjing ;
Wang, Zhaoyi ;
Liu, Bo ;
Di, Dawei .
NANO ENERGY, 2024, 127
[23]   Anti-Solvent-Free Preparation for Efficient and Photostable Pure-Iodide Wide-Bandgap Perovskite Solar Cells [J].
Nie, Ting ;
Fang, Zhimin ;
Yang, Tinghuan ;
Zhao, Kui ;
Ding, Jianning ;
Liu, Shengzhong .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (17)
[24]   Potassium-Induced Phase Stability Enables Stable and Efficient Wide-Bandgap Perovskite Solar Cells [J].
Wang, Lipeng ;
Wang, Gaoxiang ;
Yan, Zheng ;
Qiu, Jianhang ;
Jia, Chunxu ;
Zhang, Weimin ;
Zhen, Chao ;
Xu, Chuan ;
Tai, Kaiping ;
Jiang, Xin ;
Yang, Shihe .
SOLAR RRL, 2020, 4 (07)
[25]   High-Efficiency Wide-Bandgap Perovskite Solar Cells for Laser Energy Transfer Underwater [J].
Guo, Xin ;
Chen, Xiaoming ;
Li, Qingyuan ;
Zhang, Guodong ;
Ding, Guoyu ;
Li, Fenghua ;
Shi, Yifeng ;
Zhang, Yang ;
Wang, Haonan ;
Zheng, Yifan ;
Shao, Yuchuan .
ENERGY TECHNOLOGY, 2023, 11 (07)
[26]   Synergistic Effect of Methylammonium Thiocyanate and Butanammonium Formate Additives on Efficiency Enhancement in Wide-Bandgap Perovskite Solar Cells [J].
Sun, Jia ;
Gu, Yinsheng ;
Yang, Yang ;
Liu, Chang ;
Jiang, Jiwen ;
Zhang, Kuanxiang ;
Lu, Yingwei ;
Luo, Paifeng .
ACS APPLIED ENERGY MATERIALS, 2025,
[27]   Surface Crystallization Enhancement and Defect Passivation for Efficiency and Stability Enhancement of Inverted Wide-Bandgap Perovskite Solar Cells [J].
Dong, Zhuo ;
Men, Jiao ;
Wang, Jiajun ;
Huang, Zhengguo ;
Zhai, Zeyu ;
Wang, Yuwen ;
Xie, Xiaoying ;
Zhang, Chenxi ;
Lin, Yuan ;
Wu, Jinpeng ;
Zhang, Jingbo .
ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (16) :20661-20669
[28]   Organic Dyes for Interfacial Regulation of Iodine in Metal Halide Perovskite Wide-Bandgap and Tandem Solar Cells [J].
Lu, Xiaoyi ;
Zhou, Shujing ;
Sun, Kexuan ;
Meng, Yuanyuan ;
Yang, Ming ;
Zhang, Jiasen ;
Tian, Ruijia ;
Wang, Jingnan ;
Pan, Haibin ;
Bai, Yang ;
Wang, Yaohua ;
Song, Zhenhua ;
Han, Bin ;
Liu, Xirui ;
Xiao, Chuanxiao ;
Liu, Chang ;
Zhang, Jianfeng ;
Ge, Ziyi .
ACS NANO, 2025, 19 (22) :20892-20904
[29]   Low-Temperature Fabrication of Efficient Wide-Bandgap Organolead Trihalide Perovskite Solar Cells [J].
Bi, Cheng ;
Yuan, Yongbo ;
Fang, Yanjun ;
Huang, Jinsong .
ADVANCED ENERGY MATERIALS, 2015, 5 (06)
[30]   Molecular Bridge in Wide-Bandgap Perovskites for Efficient and Stable Perovskite/ Silicon Tandem Solar Cells [J].
Ye, Tianshi ;
Qiao, Liang ;
Wang, Tao ;
Wang, Pengshuai ;
Zhang, Lin ;
Sun, Ruitian ;
Kong, Weiyu ;
Xu, Menglei ;
Yan, Xunlei ;
Yang, Jie ;
Zhang, Xinyu ;
Yang, Xudong .
ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (25)