Enhancement of Interfacial Properties by Indoloquinoxaline-Based Small Molecules for Highly Efficient Wide-Bandgap Perovskite Solar Cells

被引:7
|
作者
Yong, Jihye [1 ,2 ]
Lee, Yu Kyung [3 ]
Park, Hansol [1 ,2 ]
Muthu, Senthilkumar [1 ,2 ]
Shin, Juhwan [1 ,2 ]
Whang, Dong Ryeol [4 ]
Kim, Bong-Gi [5 ]
Chang, Dong Wook [3 ]
Park, Hui Joon [1 ,2 ]
机构
[1] Hanyang Univ, Dept Organ & Nano Engn, Seoul 04763, South Korea
[2] Hanyang Univ, Human Tech Convergence Program, Seoul 04763, South Korea
[3] Pukyong Natl Univ, Dept Ind Chem, Busan 48513, South Korea
[4] Hannam Univ, Div Adv Mat, Daejeon 34054, South Korea
[5] Konkuk Univ, Dept Organ & Nano Syst Engn, Seoul 05029, South Korea
基金
新加坡国家研究基金会;
关键词
defect-passivation; interlayer; organic hole transport material; perovskite solar cell; wide-bandgap; HALIDE PEROVSKITES; SENSITIZERS; DERIVATIVES; HYSTERESIS; STABILITY; OXIDE;
D O I
10.1002/adfm.202312505
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Interfacial engineering in organic-inorganic hybrid perovskite solar cells (PSCs) has attracted significant attention, aiming to achieve high-performing and highly stable devices. Here, newly designed organic small molecules based on quinoxaline and triphenylamine for inverted type wide-bandgap PSCs are introduced, with the objective of enhancing the interfacial properties between perovskite and NiOx hole transport layer (HTL). The incorporation of an organic interlayer effectively reduces the energy level offset between the HTL and wide-bandgap perovskite, while passivating defects within the perovskite layer. It leads to improved charge extraction and minimized non-radiative recombination at the interface. Furthermore, the enhanced interfacial characteristics and hydrophobicity contribute to the improvement of perovskite film quality, resulting in larger grain size and higher crystallinity. As a result, the power conversion efficiency (PCE) of the PSC is enhanced from 18.9% to 20.1% with the incorporation of the IQTPAFlu interlayer, accompanied by an increase in Voc to approximate to 1.3 V, achieving a significantly low Voc deficit of 0.46 V. And the IQTPAFlu-based devices demonstrate stable and consistent performance over 500 h, with approximate to 91% of their initial PCE retained. The highly stable wide-bandgap PSCs, characterized by high Voc and PCEs, hold great promise as potential candidates for tandem solar cells. Quinoxaline and triphenylamine-based organic small molecules are designed to enhance the interfacial properties between the perovskite and the NiOx hole transport layer in inverted-type wide-bandgap perovskite solar cells (PSCs). The integration of these organic interlayers effectively mitigates the energy level offset, passivates defects, and enhances the quality of the perovskite film. This improvement results in an outstanding efficiency of 20.1% for a 1.75 eV wide-bandgap PSC.image
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Buried organic interlayer for high-performance and stable wide-bandgap perovskite solar cells
    Kim, Haeun
    Lee, Soo Yeon
    Park, Hansol
    Heo, Jihyeon
    Kim, Hakjun
    Kim, Yoonsung
    Prayogo, Juan Anthony
    Kim, Young-Hoon
    Whang, Dong Ryeol
    Chang, Dong Wook
    Park, Hui Joon
    CHEMICAL ENGINEERING JOURNAL, 2025, 509
  • [2] Interfacial Engineering of Wide-Bandgap Perovskites for Efficient Perovskite/CZTSSe Tandem Solar Cells
    Wang, Deng
    Guo, Hongling
    Wu, Xin
    Deng, Xiang
    Li, Fengzhu
    Li, Zhen
    Lin, Francis
    Zhu, Zonglong
    Zhang, Yi
    Xu, Baomin
    Jen, Alex K. Y.
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (02)
  • [3] Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells
    Lin, Yuze
    Chen, Bo
    Zhao, Fuwen
    Zheng, Xiaopeng
    Deng, Yehao
    Shao, Yuchuan
    Fang, Yanjun
    Bai, Yang
    Wang, Chunru
    Huang, Jinsong
    ADVANCED MATERIALS, 2017, 29 (26)
  • [4] Crystallization Enhancement and Ionic Defect Passivation in Wide-Bandgap Perovskite for Efficient and Stable All-Perovskite Tandem Solar Cells
    Qiao, Liang
    Ye, Tianshi
    Wang, Pengshuai
    Wang, Tao
    Zhang, Lin
    Sun, Ruitian
    Kong, Weiyu
    Yang, Xudong
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (07)
  • [5] Trimethyl Ammonium-Assisted Interfacial Modification for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
    Yi, Fangxuan
    Guo, Qiyao
    He, Wei
    Tang, Qunwei
    Duan, Jialong
    ENERGY TECHNOLOGY, 2024, 12 (01)
  • [6] Graded Heterojunction Improves Wide-Bandgap Perovskite for Highly Efficient 4-Terminal Perovskite/Silicon Tandem Solar Cells
    Chai, Wenming
    Li, Lindong
    Zhu, Weidong
    Chen, Dazheng
    Zhou, Long
    Xi, He
    Zhang, Jincheng
    Zhang, Chunfu
    Hao, Yue
    RESEARCH, 2023, 6
  • [7] Tailoring the Cs/Br Ratio for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
    Cao, Jiali
    Fang, Zhimin
    Liu, Shengzhong
    SOLAR RRL, 2023, 7 (02)
  • [8] A Thermally Induced Perovskite Crystal Control Strategy for Efficient and Photostable Wide-Bandgap Perovskite Solar Cells
    Kim, Geunjin
    Moon, Chan Su
    Yang, Tae-Youl
    Kim, Young Yun
    Chung, Jaehoon
    Jung, Eui Hyuk
    Shin, Tae Joo
    Jeon, Nam Joong
    Park, Helen Hejin
    Seo, Jangwon
    SOLAR RRL, 2020, 4 (06)
  • [9] Proton-transfer-induced in situ defect passivation for highly efficient wide-bandgap inverted perovskite solar cells
    Fang, Zhimin
    Jia, Lingbo
    Yan, Nan
    Jiang, Xiaofen
    Ren, Xiaodong
    Yang, Shangfeng
    Liu, Shengzhong
    INFOMAT, 2022, 4 (06)
  • [10] Impact of Precursor Concentration on Perovskite Crystallization for Efficient Wide-Bandgap Solar Cells
    Du, Shuxian
    Yang, Jing
    Qu, Shujie
    Lan, Zhineng
    Sun, Tiange
    Dong, Yixin
    Shang, Ziya
    Liu, Dongxue
    Yang, Yingying
    Yan, Luyao
    Wang, Xinxin
    Huang, Hao
    Ji, Jun
    Cui, Peng
    Li, Yingfeng
    Li, Meicheng
    MATERIALS, 2022, 15 (09)