Kinetic-pharmacodynamic model of warfarin for prothrombin time-international normalized ratio in Japanese patients

被引:1
作者
Hirai, Toshinori [1 ]
Aoyama, Takahiko [2 ]
Tsuji, Yasuhiro [2 ]
Itoh, Toshimasa [3 ]
Matsumoto, Yoshiaki [2 ]
Iwamoto, Takuya [1 ]
机构
[1] Mie Univ, Mie Univ Hosp, Fac Med, Dept Pharm, 2-174 Edobashi, Tsu, Mie 5148507, Japan
[2] Nihon Univ, Sch Pharm, Lab Clin Pharmacometr, Funabashi, Chiba, Japan
[3] Tokyo Womens Med Univ, Med Ctr East, Dept Pharm, Tokyo, Japan
基金
日本学术振兴会;
关键词
model-informed precision dosing; pharmacometrics; prothrombin time-international normalized ratio; renal function; warfarin; CHRONIC KIDNEY-DISEASE; ATRIAL-FIBRILLATION; PROTEIN-BINDING; CYP2C9; THERAPY; RISK; ANTICOAGULATION; POLYMORPHISMS; HEMORRHAGE; OUTCOMES;
D O I
10.1111/bcp.15967
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Aims: Genotype-guided dosing algorithms can explain about half of the interindividual variability in prothrombin time-international normalized ratio (PT-INR) under warfarin treatment. This study aimed to refine a published kinetic-pharmacodynamic model and guide warfarin dosage for an optimal PT-INR based on renal function.Methods: Using a retrospective cohort of adult patients (>20 years) who were administered warfarin and underwent PT-INR measurements, we refined the kinetic-pharmacodynamic model with age and the genotypes of cytochrome P450 2C9 and vitamin K epoxide reductase complex subunit 1 using the PRIOR subroutine in the nonlinear-mixed-effect modelling programme. We searched the significant covariates for parameters, such as the dose rate for 50% inhibition of coagulation (EDR50), using a stepwise forward and backward method. Monte Carlo simulation determined a required daily dose of warfarin with a target range of PT-INR (2.0-3.0 or 1.6-2.6) based on the significant covariates.Results: A total of 350 patients with 2762 PT-INR measurements were enrolled (estimated glomerular filtration rate [eGFR]: 47.5 [range: 2.6-199.0] mL/min/1.73 m(2)). The final kinetic-pharmacodynamic model showed that the EDR50 changed power functionally with body surface area, serum albumin level and eGFR. Monte Carlo simulation revealed that a lower daily dose of warfarin was required to attain the target PT-INR range as eGFR decreased.Conclusions: Model-informed precision dosing of warfarin is a valuable approach for estimating its dosage in patients with renal impairment.
引用
收藏
页码:828 / 836
页数:9
相关论文
共 39 条
[1]   A Randomized and Clinical Effectiveness Trial Comparing Two Pharmacogenetic Algorithms and Standard Care for Individualizing Warfarin Dosing (CoumaGen-II) [J].
Anderson, Jeffrey L. ;
Horne, Benjamin D. ;
Stevens, Scott M. ;
Woller, Scott C. ;
Samuelson, Kent M. ;
Mansfield, Justin W. ;
Robinson, Michelle ;
Barton, Stephanie ;
Brunisholz, Kim ;
Mower, Chrissa P. ;
Huntinghouse, John A. ;
Rollo, Jeffrey S. ;
Siler, Dustin ;
Bair, Tami L. ;
Knight, Stacey ;
Muhlestein, Joseph B. ;
Carlquist, John F. .
CIRCULATION, 2012, 125 (16) :1997-+
[2]  
Aoyama T, 2022, BIOL PHARM BULL, V45, P136, DOI 10.1248/bpb.b21-00778
[3]   Thrombin generation in morbid obesity: significant reduction after weight loss [J].
Ay, L. ;
Kopp, H. -P. ;
Brix, J. -M. ;
Ay, C. ;
Quehenberger, P. ;
Schernthaner, G. -H. ;
Pabinger, I. ;
Schernthaner, G. .
JOURNAL OF THROMBOSIS AND HAEMOSTASIS, 2010, 8 (04) :759-765
[4]   Changes in plasma protein binding have little clinical relevance [J].
Benet, LZ ;
Hoener, BA .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2002, 71 (03) :115-121
[5]   A randomized controlled trial of genotype-based Coumadin initiation [J].
Burmester, James K. ;
Berg, Richard L. ;
Yale, Steven H. ;
Rottscheit, Carla M. ;
Glurich, Ingrid E. ;
Schmelzer, John R. ;
Caldwell, Michael D. .
GENETICS IN MEDICINE, 2011, 13 (06) :509-518
[6]   CYP2C9 genotype-guided warfarin prescribing enhances the efficacy and safety of anticoagulation:: A prospective randomized controlled study [J].
Caraco, Y. ;
Blotnick, S. ;
Muszkat, M. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2008, 83 (03) :460-470
[7]   Prior information for population pharmacokinetic and pharmacokinetic/pharmacodynamic analysis: overview and guidance with a focus on the NONMEM PRIOR subroutine [J].
Chan Kwong, Anna H. -X. P. ;
Calvier, Elisa A. M. ;
Fabre, David ;
Gattacceca, Florence ;
Khier, Sonia .
JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2020, 47 (05) :431-446
[8]   Why has model-informed precision dosing not yet become common clinical reality? lessons from the past and a roadmap for the future [J].
Darwich, A. S. ;
Ogungbenro, K. ;
Vinks, A. A. ;
Powell, J. R. ;
Reny, J-L ;
Marsousi, N. ;
Daali, Y. ;
Fairman, D. ;
Cook, J. ;
Lesko, L. J. ;
McCune, J. S. ;
Knibbe, C. A. J. ;
de Wildt, S. N. ;
Leeder, J. S. ;
Neely, M. ;
Zuppa, A. F. ;
Vicini, P. ;
Aarons, L. ;
Johnson, T. N. ;
Boiani, J. ;
Rostami-Hodjegan, A. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2017, 101 (05) :646-656
[9]  
Elliott Meghan J, 2014, Can J Kidney Health Dis, V1, P13, DOI 10.1186/2054-3581-1-13
[10]   Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin [J].
Gage, B. F. ;
Eby, C. ;
Johnson, J. A. ;
Deych, E. ;
Rieder, M. J. ;
Ridker, P. M. ;
Milligan, P. E. ;
Grice, G. ;
Lenzini, P. ;
Rettie, A. E. ;
Aquilante, C. L. ;
Grosso, L. ;
Marsh, S. ;
Langaee, T. ;
Farnett, L. E. ;
Voora, D. ;
Veenstra, D. L. ;
Glynn, R. J. ;
Barrett, A. ;
McLeod, H. L. .
CLINICAL PHARMACOLOGY & THERAPEUTICS, 2008, 84 (03) :326-331