Electrolyte Coatings for High Adhesion Interfaces in Solid-State Batteries from First Principles

被引:4
作者
Ransom, Brandi [1 ]
Ramdas, Akash [1 ]
Lomeli, Eder [1 ]
Fidawi, Jad [1 ]
Sendek, Austin [1 ,2 ]
Devereaux, Tom [1 ,3 ]
Reed, Evan J. [1 ]
Schindler, Peter [4 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Aionics Inc, Palo Alto, CA 94301 USA
[3] Stanford Univ, Stanford Inst Mat & Energy Sci, Stanford, CA 94305 USA
[4] Northeastern Univ, Dept Mech & Ind Engn, Boston, MA 02115 USA
关键词
adhesion; solid state; first-principles; lithium; interface; LI-ION CONDUCTIVITY; LITHIUM; STABILITY; PERFORMANCE; LIAL5O8; CATHODE; SURFACE;
D O I
10.1021/acsami.3c04452
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
We introduce an adhesion parameter that enables rapid screening for materials interfaces with high adhesion. This parameter is obtained by density functional theory calculations of individual single-material slabs rather than slabs consisting of combinations of two materials, eliminating the need to calculate all configurations of a prohibitively vast space of possible interface configurations. Cleavage energy calculations are used as an upper bound for electrolyte and coating energies and implemented in an adapted contact angle equation to derive the adhesion parameter. In addition to good adhesion, we impose further constraints in electrochemical stability window, abundance, bulk reactivity, and stability to screen for coating materials for next-generation solid-state batteries. Good adhesion is critical in combating delamination and resistance to lithium diffusivity in solid-state batteries. Here, we identify several promising coating candidates for the Li7La3Zr2O12 and sulfide electrolyte systems including the previously investigated electrode coating materials LiAlSiO4 and Li5AlO8, making them especially attractive for experimental optimization and commercialization.
引用
收藏
页码:44394 / 44403
页数:10
相关论文
共 57 条
[1]  
Battery Market Size, 2022, SHARE IND REPORT 202
[2]   Transport properties of solid electrolytes: Effect of the isotope composition of lithium charge carriers [J].
Bogomolov, MY ;
Pantyukhina, MI ;
Surin, AA ;
Obrosov, VP ;
Batalov, NN ;
Stepanov, AP ;
Surikov, VT .
RUSSIAN JOURNAL OF ELECTROCHEMISTRY, 2004, 40 (10) :1029-1034
[3]   Exploring interfacial stability of solid-state electrolytes at the lithium-metal anode surface [J].
Camacho-Forero, Luis E. ;
Balbuena, Perla B. .
JOURNAL OF POWER SOURCES, 2018, 396 :782-790
[4]   Kinetic versus Thermodynamic Stability of LLZO in Contact with Lithium Metal [J].
Connell, Justin G. ;
Fuchs, Till ;
Hartmann, Hannah ;
Krauskopf, Thorben ;
Zhu, Yisi ;
Sann, Joachim ;
Garcia-Mendez, Regina ;
Sakamoto, Jeff ;
Tepavcevic, Sanja ;
Janek, Juergen .
CHEMISTRY OF MATERIALS, 2020, 32 (23) :10207-10215
[5]   IONIC CONDUCTIVITY-ENHANCEMENT OF LICL BY HOMOGENEOUS AND HETEROGENEOUS DOPINGS [J].
COURTCASTAGNET, R ;
KAPS, C ;
CROS, C ;
HAGENMULLER, P .
SOLID STATE IONICS, 1993, 61 (04) :327-334
[6]   Single-Crystalline LiMn2O4 Nanotubes Synthesized Via Template-Engaged Reaction as Cathodes for High-Power Lithium Ion Batteries [J].
Ding, Yuan-Li ;
Xie, Jian ;
Cao, Gao-Shao ;
Zhu, Tie-Jun ;
Yu, Hong-Ming ;
Zhao, Xin-Bing .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (02) :348-355
[7]   Evolution of the Laser-Induced Spallation Technique in Film Adhesion Measurement [J].
Ehsani, Hassan ;
Boyd, James D. ;
Wang, Junlan ;
Grady, Martha E. .
APPLIED MECHANICS REVIEWS, 2021, 73 (03)
[8]   Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery [J].
Fan, Xiulin ;
Ji, Xiao ;
Han, Fudong ;
Yue, Jie ;
Chen, Ji ;
Chen, Long ;
Deng, Tao ;
Jiang, Jianjun ;
Wang, Chunsheng .
SCIENCE ADVANCES, 2018, 4 (12)
[9]   Electrochemical Stability of Li10GeP2S12 and Li7La3Zr2O12 Solid Electrolytes [J].
Han, Fudong ;
Zhu, Yizhou ;
He, Xingfeng ;
Mo, Yifei ;
Wang, Chunsheng .
ADVANCED ENERGY MATERIALS, 2016, 6 (08)
[10]   Lithium garnet-cathode interfacial chemistry: inclusive insights and outlook toward practical solid-state lithium metal batteries [J].
Indu, M. S. ;
Alexander, G., V ;
Sreejith, O., V ;
Abraham, S. E. ;
Murugan, R. .
MATERIALS TODAY ENERGY, 2021, 21