Deep Hypersphere Feature Regularization for Weakly Supervised RGB-D Salient Object Detection

被引:15
作者
Liu, Zhiyu [1 ]
Hayat, Munawar [2 ]
Yang, Hong [1 ]
Peng, Duo [3 ]
Lei, Yinjie [1 ]
机构
[1] Sichuan Univ, Coll Elect & Informat Engn, Chengdu 610065, Peoples R China
[2] Monash Univ, Dept Data Sci & AI, Melbourne, Vic 3800, Australia
[3] Singapore Univ Technol & Design, Informat Syst Technol & Design Pillar, Singapore 487372, Singapore
基金
中国国家自然科学基金;
关键词
Feature extraction; Semantics; Transformers; Object detection; Decoding; Annotations; Image edge detection; Salient object detection; weakly supervised learning; Deep Hypersphere Feature Regularization; Von Mises Fisher; IMAGE;
D O I
10.1109/TIP.2023.3318953
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a weakly supervised approach for salient object detection from multi-modal RGB-D data. Our approach only relies on labels from scribbles, which are much easier to annotate, compared with dense labels used in conventional fully supervised setting. In contrast to existing methods that employ supervision signals on the output space, our design regularizes the intermediate latent space to enhance discrimination between salient and non-salient objects. We further introduce a contour detection branch to implicitly constrain the semantic boundaries and achieve precise edges of detected salient objects. To enhance the long-range dependencies among local features, we introduce a Cross-Padding Attention Block (CPAB). Extensive experiments on seven benchmark datasets demonstrate that our method not only outperforms existing weakly supervised methods, but is also on par with several fully-supervised state-of-the-art models. Code is available at https://github.com/leolyj/DHFR-SOD.
引用
收藏
页码:5423 / 5437
页数:15
相关论文
共 77 条
[1]  
Achanta R, 2009, PROC CVPR IEEE, P1597, DOI 10.1109/CVPRW.2009.5206596
[2]  
[Anonymous], 2011, PETMEI 11 P 1 INT WO, DOI DOI 10.1145/2029956.2029968
[3]  
Banerjee A, 2005, J MACH LEARN RES, V6, P1345
[4]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877
[5]  
Borji A., 2012, CVPR, P23
[6]   Salient object detection: A survey [J].
Borji, Ali ;
Cheng, Ming-Ming ;
Hou, Qibin ;
Jiang, Huaizu ;
Li, Jia .
COMPUTATIONAL VISUAL MEDIA, 2019, 5 (02) :117-150
[7]   Saliency Prediction in the Deep Learning Era: Successes and Limitations [J].
Borji, Ali .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (02) :679-700
[8]   Reverse Attention-Based Residual Network for Salient Object Detection [J].
Chen, Shuhan ;
Tan, Xiuli ;
Wang, Ben ;
Lu, Huchuan ;
Hu, Xuelong ;
Fu, Yun .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 :3763-3776
[9]   An Empirical Study of Training Self-Supervised Vision Transformers [J].
Chen, Xinlei ;
Xie, Saining ;
He, Kaiming .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, :9620-9629
[10]  
Cheng Y, 2014, IEEE INT CON MULTI