Plasma-Promoted Ammonia Decomposition over Supported Ruthenium Catalysts for COx-Free H2 Production

被引:7
|
作者
Wang, Zhijun [1 ]
He, Ge [2 ]
Zhang, Huazhou [2 ]
Liao, Che [2 ]
Yang, Chi [1 ]
Zhao, Feng [1 ]
Lei, Guangjiu [3 ]
Zheng, Guoyao [3 ]
Mao, Xinchun [4 ]
Zhang, Kun [5 ]
机构
[1] Chengdu Univ, Inst Adv Study, Chengdu 610106, Sichuan, Peoples R China
[2] Chengdu Univ, Sch Mech Engn, Chengdu 610106, Sichuan, Peoples R China
[3] Southwestern Inst Phys SWIP, Chengdu 610225, Sichuan, Peoples R China
[4] China Acad Engn Phys, Inst Mat, Jiangyou 621908, Sichuan, Peoples R China
[5] Sichuan Univ, Inst Nucl Sci & Technol, Chengdu 610064, Sichuan, Peoples R China
基金
中国国家自然科学基金;
关键词
ammonia decomposition; hydrogen production; supported catalysts; plasma catalysis; ruthenium; HYDROGEN-PRODUCTION; NH3; DECOMPOSITION; ROOM-TEMPERATURE; PARTICLE-SIZE; ENERGY; RU; GENERATION; STORAGE; NI; RU/AL2O3;
D O I
10.1002/cssc.202202370
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The efficient decomposition of ammonia to produce COx-free hydrogen at low temperatures has been extensively investigated as a potential method for supplying hydrogen to mobile devices based on fuel cells. In this study, we employed dielectric barrier discharge (DBD) plasma, a non-thermal plasma, to enhance the catalytic ammonia decomposition over supported Ru catalysts (Ru/Y2O3, Ru/La2O3, Ru/CeO2 and Ru/SiO2). The plasma-catalytic reactivity of Ru/La2O3 was found to be superior to that of the other three catalysts. It was observed that both the physicochemical properties of the catalyst (such as support acidity) and the plasma discharge behaviours exerted significant influence on plasma-catalytic reactivity. Combining plasma with a Ru catalyst significantly enhanced ammonia conversion at low temperatures, achieving near complete NH3 conversion over the 1.5 %-Ru/La2O3 catalyst at temperatures as low as 380 degrees C. Under a weight gas hourly space velocity of 2400 mL g(cat)(-1) h(-1) and an AC supply power of 20 W, the H-2 formation rate and energy efficiency achieved were 10.7 mol g(Ru)(-1) h(-1) and 535 mol g(Ru)(-1) (kWh)(-1), respectively, using a 1.5 %-Ru/La2O3 catalyst.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Ni nanoparticles supported on mica for efficient decomposition of ammonia to COx-free hydrogen
    Hu, Zhong-Pan
    Weng, Chen-Chen
    Yuan, Ge-Ge
    Lv, Xian-Wei
    Yuan, Zhong-Yong
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (20) : 9663 - 9676
  • [22] Methane Pyrolysis for Carbon Nanotubes and COx-Free H2 over Transition-Metal Catalysts
    Wang, I-Wen
    Kutteri, Deepa Ayillath
    Gao, Bingying
    Tian, Hanjing
    Hu, Jianli
    ENERGY & FUELS, 2019, 33 (01) : 197 - 205
  • [23] COx-free hydrogen generation via decomposition of ammonia over copper and zinc-based catalysts
    Dasireddy, Venkata D. B. C.
    Likozar, Blaz
    FUEL, 2017, 196 : 325 - 335
  • [24] COx-free hydrogen production via decomposition of ammonia over Cu-Zn-based heterogeneous catalysts and their activity/stability
    Hajduk, Spela
    Dasireddy, Venkata D. B. C.
    Likozar, Blaz
    Drazic, Goran
    Orel, Zorica Crnjak
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 211 : 57 - 67
  • [25] Cs-modified iron nanoparticles encapsulated in microporous and mesoporous SiO2 for COx-free H2 production via ammonia decomposition
    Li, Yanxing
    Yao, Lianghong
    Liu, Shunqiang
    Zhao, Jing
    Ji, Weijie
    Au, Chak-Tong
    CATALYSIS TODAY, 2011, 160 (01) : 79 - 86
  • [26] Ni/CeO2-Al2O3 catalysts for methane thermo-catalytic decomposition to COx-free H2 production
    Ahmed, W.
    Awadallah, Ahmed E.
    Aboul-Enein, Ateyya A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2016, 41 (41) : 18484 - 18493
  • [27] Catalytic ammonia decomposition:: COx-free hydrogen production for fuel cell applications
    Choudhary, TV
    Sivadinarayana, C
    Goodman, DW
    CATALYSIS LETTERS, 2001, 72 (3-4) : 197 - 201
  • [28] Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications
    T.V. Choudhary
    C. Sivadinarayana
    D.W. Goodman
    Catalysis Letters, 2001, 72 : 197 - 201
  • [29] Catalytic ammonia decomposition:: miniaturized production of COx-free hydrogen for fuel cells
    Sorensen, RZ
    Nielsen, LJE
    Jensen, S
    Hansen, O
    Johannessen, T
    Quaade, U
    Christensen, CH
    CATALYSIS COMMUNICATIONS, 2005, 6 (03) : 229 - 232
  • [30] Ammonia decomposition over SiO2-supported Ni-Co bimetallic catalyst for COx-free hydrogen generation
    Wu, Ze-Wei
    Li, Xin
    Qin, Yuan-Hang
    Deng, Lidan
    Wang, Cun-Wen
    Jiang, Xingmao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (30) : 15263 - 15269